1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for random number generation //! //! The key functions are `random()` and `Rng::gen()`. These are polymorphic //! and so can be used to generate any type that implements `Rand`. Type inference //! means that often a simple call to `rand::random()` or `rng.gen()` will //! suffice, but sometimes an annotation is required, e.g. `rand::random::<f64>()`. //! //! See the `distributions` submodule for sampling random numbers from //! distributions like normal and exponential. //! //! # Thread-local RNG //! //! There is built-in support for a RNG associated with each thread stored //! in thread-local storage. This RNG can be accessed via `thread_rng`, or //! used implicitly via `random`. This RNG is normally randomly seeded //! from an operating-system source of randomness, e.g. `/dev/urandom` on //! Unix systems, and will automatically reseed itself from this source //! after generating 32 KiB of random data. //! //! # Cryptographic security //! //! An application that requires an entropy source for cryptographic purposes //! must use `OsRng`, which reads randomness from the source that the operating //! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows). //! The other random number generators provided by this module are not suitable //! for such purposes. //! //! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`. //! This module uses `/dev/urandom` for the following reasons: //! //! - On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block. //! This does not mean that `/dev/random` provides better output than //! `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom //! number generator (CSPRNG) based on entropy pool for random number generation, //! so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases. //! However, this means that `/dev/urandom` can yield somewhat predictable randomness //! if the entropy pool is very small, such as immediately after first booting. //! Linux 3.17 added the `getrandom(2)` system call which solves the issue: it blocks if entropy //! pool is not initialized yet, but it does not block once initialized. //! `getrandom(2)` was based on `getentropy(2)`, an existing system call in OpenBSD. //! `OsRng` tries to use `getrandom(2)` if available, and use `/dev/urandom` fallback if not. //! If an application does not have `getrandom` and likely to be run soon after first booting, //! or on a system with very few entropy sources, one should consider using `/dev/random` via //! `ReaderRng`. //! - On some systems (e.g. FreeBSD, OpenBSD and macOS) there is no difference //! between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random` //! and `/dev/urandom` may block once if the CSPRNG has not seeded yet.) #![unstable(feature = "rand", issue = "27703")] use cell::RefCell; use fmt; use io; use mem; use rc::Rc; use sys; #[cfg(target_pointer_width = "32")] use core_rand::IsaacRng as IsaacWordRng; #[cfg(target_pointer_width = "64")] use core_rand::Isaac64Rng as IsaacWordRng; pub use core_rand::{Rand, Rng, SeedableRng}; pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng}; pub use core_rand::reseeding; pub mod reader; /// The standard RNG. This is designed to be efficient on the current /// platform. #[derive(Copy, Clone)] pub struct StdRng { rng: IsaacWordRng, } impl StdRng { /// Create a randomly seeded instance of `StdRng`. /// /// This is a very expensive operation as it has to read /// randomness from the operating system and use this in an /// expensive seeding operation. If one is only generating a small /// number of random numbers, or doesn't need the utmost speed for /// generating each number, `thread_rng` and/or `random` may be more /// appropriate. /// /// Reading the randomness from the OS may fail, and any error is /// propagated via the `io::Result` return value. pub fn new() -> io::Result<StdRng> { OsRng::new().map(|mut r| StdRng { rng: r.gen() }) } } impl Rng for StdRng { #[inline] fn next_u32(&mut self) -> u32 { self.rng.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.rng.next_u64() } } impl<'a> SeedableRng<&'a [usize]> for StdRng { fn reseed(&mut self, seed: &'a [usize]) { // the internal RNG can just be seeded from the above // randomness. self.rng.reseed(unsafe {mem::transmute(seed)}) } fn from_seed(seed: &'a [usize]) -> StdRng { StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) } } } /// Controls how the thread-local RNG is reseeded. struct ThreadRngReseeder; impl reseeding::Reseeder<StdRng> for ThreadRngReseeder { fn reseed(&mut self, rng: &mut StdRng) { *rng = match StdRng::new() { Ok(r) => r, Err(e) => panic!("could not reseed thread_rng: {}", e) } } } const THREAD_RNG_RESEED_THRESHOLD: usize = 32_768; type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>; /// The thread-local RNG. #[derive(Clone)] pub struct ThreadRng { rng: Rc<RefCell<ThreadRngInner>>, } impl fmt::Debug for ThreadRng { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("ThreadRng { .. }") } } /// Retrieve the lazily-initialized thread-local random number /// generator, seeded by the system. Intended to be used in method /// chaining style, e.g. `thread_rng().gen::<isize>()`. /// /// The RNG provided will reseed itself from the operating system /// after generating a certain amount of randomness. /// /// The internal RNG used is platform and architecture dependent, even /// if the operating system random number generator is rigged to give /// the same sequence always. If absolute consistency is required, /// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`. pub fn thread_rng() -> ThreadRng { // used to make space in TLS for a random number generator thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = { let r = match StdRng::new() { Ok(r) => r, Err(e) => panic!("could not initialize thread_rng: {}", e) }; let rng = reseeding::ReseedingRng::new(r, THREAD_RNG_RESEED_THRESHOLD, ThreadRngReseeder); Rc::new(RefCell::new(rng)) }); ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) } } impl Rng for ThreadRng { fn next_u32(&mut self) -> u32 { self.rng.borrow_mut().next_u32() } fn next_u64(&mut self) -> u64 { self.rng.borrow_mut().next_u64() } #[inline] fn fill_bytes(&mut self, bytes: &mut [u8]) { self.rng.borrow_mut().fill_bytes(bytes) } } /// A random number generator that retrieves randomness straight from /// the operating system. Platform sources: /// /// - Unix-like systems (Linux, Android, macOS): read directly from /// `/dev/urandom`, or from `getrandom(2)` system call if available. /// - Windows: calls `CryptGenRandom`, using the default cryptographic /// service provider with the `PROV_RSA_FULL` type. /// - iOS: calls SecRandomCopyBytes as /dev/(u)random is sandboxed. /// - OpenBSD: uses the `getentropy(2)` system call. /// /// This does not block. pub struct OsRng(sys::rand::OsRng); impl OsRng { /// Create a new `OsRng`. pub fn new() -> io::Result<OsRng> { sys::rand::OsRng::new().map(OsRng) } } impl Rng for OsRng { #[inline] fn next_u32(&mut self) -> u32 { self.0.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.0.next_u64() } #[inline] fn fill_bytes(&mut self, bytes: &mut [u8]) { self.0.fill_bytes(bytes) } } #[cfg(test)] mod tests { use sync::mpsc::channel; use rand::Rng; use super::OsRng; use thread; #[test] fn test_os_rng() { let mut r = OsRng::new().unwrap(); r.next_u32(); r.next_u64(); let mut v = [0; 1000]; r.fill_bytes(&mut v); } #[test] #[cfg_attr(target_os = "emscripten", ignore)] fn test_os_rng_tasks() { let mut txs = vec![]; for _ in 0..20 { let (tx, rx) = channel(); txs.push(tx); thread::spawn(move|| { // wait until all the threads are ready to go. rx.recv().unwrap(); // deschedule to attempt to interleave things as much // as possible (XXX: is this a good test?) let mut r = OsRng::new().unwrap(); thread::yield_now(); let mut v = [0; 1000]; for _ in 0..100 { r.next_u32(); thread::yield_now(); r.next_u64(); thread::yield_now(); r.fill_bytes(&mut v); thread::yield_now(); } }); } // start all the threads for tx in &txs { tx.send(()).unwrap(); } } }