
CERN IT

Dynafed v1.3.3

Author:

Fabrizio Furano
October 11, 2018

Contents

1 Introduction 5

2 The goal and the available components 5

3 Some use cases 8

3.1 DPM and dCache via WebDAV . 8

3.2 Add third-party storage farms . 9

3.3 Create a small local federation of close sites sharing storage 9

3.4 Add resources managed by one or more replica catalogues 10

3.5 Federating file caches . 11

3.6 Allow the system to apply geography-aware redirection choices . . . 11

4 The system 12

4.1 Two clients issue a stat() request 14

4.2 Two clients request the full list of the replicas of a file 15

4.3 In-memory volatile namespace and caching 16

4.4 Simple name translations . 18

5 Typical deployment of a Dynamic Federations frontend 19

6 Configuration parameters reference 20

6.1 Ugr core configuration . 22

6.1.1 INCLUDE . 22

6.1.2 glb.debug . 22

6.1.3 glb.debug.components[] . 23

6.1.4 glb.addchildtoparentonput 23

6.1.5 glb.addchildtoparentonstat 23

6.1.6 glb.locplugin . 24

6.1.7 glb.waittimeout . 25

6.1.8 glb.maxlistitems . 25

6.1.9 glb.filterplugin . 25

6.2 Global name translation . 25

6.2.1 glb.n2n pfx . 26

6.2.2 glb.n2n newpfx . 26

1

6.3 Slave plugins and replica translators 26

6.4 Plugin-level filename prefix translation 27

6.4.1 Example: Translate SRM TURLs into HTTP URLs 28

6.4.2 locplugin.<ID>.pfxmultiply 29

6.4.3 locplugin.<ID>.xlatepfx . 29

6.5 Infohandler advanced parameters 31

6.5.1 infohandler.maxitems . 31

6.5.2 infohandler.itemttl . 31

6.5.3 infohandler.itemmaxttl . 31

6.5.4 infohandler.itemttl negative 32

6.5.5 infohandler.useextcache . 32

6.6 extcache.memcached.server[] . 32

6.6.1 extcache.memcached.ttl . 33

6.6.2 extcache.memcached.useBinaryProtocol 33

6.7 Authorization of groups and users 33

6.7.1 glb.allowusers[] . 34

6.7.2 glb.allowgroups[] . 34

6.7.3 glb.authorizationplugin . 36

6.7.4 The Python authorization plugin 36

6.8 Location Plugin . 38

6.8.1 locplugin.<ID>.listable . 38

6.8.2 locplugin.<ID>.readable . 39

6.8.3 locplugin.<ID>.writable . 39

6.8.4 locplugin.<ID>.max latency 39

6.9 DAV and HTTP plugin . 40

6.9.1 locplugin.<ID>.ssl check . 41

6.9.2 locplugin.<ID>.ca path . 41

6.9.3 locplugin.<ID>.cli type . 41

6.9.4 locplugin.<ID>.cli private key 41

6.9.5 locplugin.<ID>.cli certificate 42

6.9.6 locplugin.<ID>.conn timeout 42

6.9.7 locplugin.<ID>.custom header[] 42

6.9.8 locplugin.<ID>.ops timeout 42

6.9.9 locplugin.<ID>.status checking 43

2

6.9.10 locplugin.<ID>.status checker frequency 43

6.9.11 locplugin.<ID>.auth login 43

6.9.12 locplugin.<ID>.auth passwd 43

6.9.13 locplugin.<ID>.metalink support 43

6.10 S3 plugin . 44

6.10.1 locplugin.<ID>.s3.priv key 44

6.10.2 locplugin.<ID>.s3.pub key 44

6.10.3 locplugin.<ID>.s3.region . 45

6.10.4 locplugin.<ID>.s3.signaturevalidity 45

6.10.5 locplugin.<ID>.s3.alternate 45

6.11 GeoIP plugin for geographical information (obsolete) 46

6.11.1 glb.filterplugin.geoip.fuzz . 47

6.12 MaxMindDB plugin for geographical information 47

6.12.1 glb.filterplugin.mmdb.fuzz 48

6.13 Microsoft Azure plugin . 48

6.13.1 locplugin.<ID>.azure.key 49

6.13.2 locplugin.<ID>.azure.signaturevalidity 49

6.14 DAVrucio plugin . 50

6.14.1 locplugin.<ID>.xlatepfx ruciohash 50

6.15 DMLite client plugin . 52

3

Abstract

A number of storage elements and Grid data management components

now offer standard protocol interfaces like WebDAV for access to their data

repositories. Here we report on work that seeks to exploit the federation

potential of these protocols and build a system that offers a unique view

of the storage and metadata ensemble and the possibility of integration of

other compatible resources such as those from cloud providers. The chal-

lenge, here undertaken by the providers of dCache and DPM, and pragmat-

ically open to other Grid and Cloud storage solutions, is to build such a

system while being able to accommodate name translations from existing

catalogues (e.g. LFCs), experiment-based metadata catalogues, or stateless

algorithmic name translations, also known as ”trivial file catalogues”. Such

so-called storage federations of standard protocols-based storage elements

give a unique view of their content, thus promoting simplicity in accessing

the data they contain and offering new possibilities for resilience and data

placement strategies. The goal is to consider storage elements and metadata

catalogues that can be queried through HTTP and WebDAV dialects (thus

including S3 and MS Azure) and make them able to cooperate through an

architecture that properly feeds the redirection mechanisms that they are

based upon, thus giving the functionalities of a ”loosely coupled” storage

federation. One of the key requirements is to use standard clients (pro-

vided by OS’es or open source distributions, e.g. Web browsers) to access

an already aggregated system; this approach is quite different from aggre-

gating the repositories at the client side through some wrapper API, like

for instance GFAL, or by developing new custom clients. Other technical

challenges that will determine the success of this initiative include perfor-

mance, latency and scalability, and the ability to create worldwide storage

federations that are able to redirect clients to repositories that they can

efficiently access, for instance trying to choose the endpoints that are closer

or applying other criteria. We believe that the features of a loosely cou-

pled federation of open-protocols-based storage elements will open many

possibilities of evolving the current computing models without disrupting

them, and, at the same time, will be able to operate with the existing in-

frastructures, follow their evolution path and add storage centers that can

be acquired as a third-party service.

4

1 Introduction

In this document we describe the Storage federation system that we designed and

built to match with the existing and upcoming Grid-related data management ar-

chitectures. The system is able to federate storage sites and metadata endpoints

that expose a suitable data access protocol, into a transparent, high performance

storage federation that exposes a unique name space. The architecture can accom-

modate LFN/PFN algorithmic name translations without the need of catalogues.

On the other hand, if catalogues are needed, several of them can be accommodated

into the same federation. The idea is to allow applications to access a globally dis-

tributed repository, to which sites participate. The applications would be able to

efficiently access data that is spread through different sites, by means of a redirec-

tion mechanism that is supported by the data access protocol that is used. The

focus is on standard protocols for data access, like HTTP and WebDAV, and NFS

can be considered as well. The architecture and the components of such a system

are anyway detached from the actual protocol that is used.

The focus of our design is on the fact that a federation may be composed by distant

sites, and the redirection choices have to take this into account, without imposing

the need of partitioning a federation into smaller ones on a geographical basis, or

partitioning the name space.

Another point that is important for our design, is that such a system should be

efficient also in the browsing case, e.g. allowing an user to list the content of a

directory in a fast and reliable way that does not impact the performance of the

whole system.

2 The goal and the available components

The purpose of the project is being able to aggregate storage and metadata farms

exposing standard protocols that support redirections and WAN data access, making

they behave as a unique system, building the illusion of a unique namespace from a

set of distinct endpoints, being able to accommodate also explicit, catalogue-based

indexing. The more notable examples of suitable protocols are HTTP/WebDAV

and NFS 4.1.

Figure 1 shows an example of the meaning of the term ’Federation’ in this

5

Figure 1: How namespaces can be merged to federate three hosts.

context. In the example we have three distributed storage systems, named A, B

and C, each one exposing a name space containing files and directories. The upper

box in the picture shows how the federated name space looks like. The rule applied

is ”if a file or directory exists in at least one of the systems A, B or C, then it is

considered as contained in the federated system”.

One more aspect of this aggregation of storage resources is that the aggregat-

ing system does not need to keep a persistent index of the content of the systems

A+B+C. It can just query the subsystems when any information is needed, and

eventually cache in some way the responses it receives.

Such a federation of sites has to be intended as a set of storage endpoints

(and/or replica location catalogues or name translators) that is:

• protocol-homogeneous (a client that uses a particular protocol must be able

to operate with all the members of the federation, using that protocol)

• namespace-homogeneous (each file is identified by a unique string key, which

we call path/name. If two storage endpoints have a file with the same name,

6

then they are two replicas of the same file.)

Given the criteria the WLCG data is distributed through sites, we did not want

to limit the design by forcing to create partitions of the data repositories based on

the path/name. Although a formally correct idea, it’s apparently not compatible

with the way LHC data is being distributed and used.

In order not to limit the use cases to file fetching, the repositories should sup-

port the protocol features that allow an application to analyze data via WAN

(with a proper analysis application) [6]. This is the case of the HTTP and, possi-

bly, nfs4.1 protocols.

Although creating several, distinct federations is always possible, the most

interesting case is obviously the one for which there is only one big efficient fed-

eration, with a logical unique entry point that eventually could be replicated in

several places. For the purposes of our project it’s immaterial if this big federation

aggregates sub-federations or storage endpoints or name translators or replica lo-

cation catalogues. As a comparison, the xrootd [7] federations support this kind

of very wide setups by means of a mechanism called peering, which has a few con-

straints. We refer the reader to the xrootd documentation in the case they are not

familiar with the concept.

The Grid software gives the possibility of choosing among several components

the ones that are more suitable for handling the storage and metadata parts of the

design of a computing model. Some of them are, for example DPM, LFC, dCache.

Nowadays we have also to start considering as parts of the solution the upcoming

evolutions of these components [10] [9], that are headed to supporting standard

protocols like HTTP, WebDAV and NFS4.1 in the context of scientific computing.

On top of this we must also consider the opportunity of acquiring storage as an

external service, as an additional kind of endpoint to fit in a modern design.

The goal of the Dynamic Federations project is to give efficient tools that are able

to accommodate in a coherent way the variety of storage and metadata endpoints

that a distributed, heterogeneous deployment of storage farms will make available.

At the same time, the guidelines of the project are to privilege the aspects that

are related to performance, scalability and usability of the federation services.

7

3 Some use cases

We describe here a few use cases for our ”storage federation engine”, that we

consider as clear examples of the features that our system provides and as deploy-

ment use cases that have been tested with the system we designed. These are

not intended to be precise specifications of the system. Of course the list is not

exhaustive, given the flexibility of the concept. Moreover, the various points do

not exclude each other.

In the case of a big loosely coupled federation, the choices to redirect a client to

a repository or another should be based at least on the availability of the requested

resource in that endpoint. Other metrics can be considered, like the geographi-

cal location of the client with respect to the various possible servers, and/or the

load of the endpoints. In other words, a client in Switzerland should not be redi-

rected to read data from Taipei, unless the requested data is hosted only in Taipei.

We would like to recall that we are treating data access protocols that natively

support redirections. The idea is that an application would use only a ”standard”

client (like a Web browser or an application using an HTTP client) to access the

data, without additional client-side software layers that emulate the aggregation

of the storage centers.

3.1 DPM and dCache via WebDAV

Given a number of storage endpoints deploying the WebDAV door of the dCache

or DPM systems [10] [9], a completely transparent federation of them is possible,

using only features of the WebDAV protocol. This use case has been the first one

to be demoed by the Dynamic Federations project, and the first two endpoints that

were added to a working federation have been a dCache instance at DESY (Ger-

many) and a DPM instance in ASGC (Taipei). The test did what it advertised,

i.e. the users could not realize that they were browsing and using a federation of

two distant sites. Moreover, the feeling of performance that the system gives is

the one of a site that is hosted in the federation’s frontend machine, with a fast

and smooth interactivity.

8

3.2 Add third-party storage farms

We cite here what was the first formulation of this use case to be fulfilled by the

Dynamic Federations project:

We buy from a company a service consisting in 100PB of high performance stor-

age, located in a remote server farm. The company only allows the use of the

WebDAV/HTTP protocol to access it, since its technicians do not know anything

else, and do not want to internally expose their infrastructure to unknown sophis-

ticated systems, by installing them.

We want the clients to be able to see this service through the same entry point

that aggregates other similar services in a completely transparent way, at least for

the data reading case. We don’t want the client applications to be instrumented

in order to accommodate this case. We don’t want a Data Management system to

treat this case as an exception of some kind.

This would allow users to browse their files using Internet Explorer without poten-

tially being aware of the location of the items they see, and to run their personal

analyses pointing their applications to the unique entry point, using the URLs that

they see in the browser.

This use case may also accommodate the use case of the ”Cloud storage

providers”. Technically, we chose to use a Cloud storage service provided by T-

Mobile (Germany) through WebDAV, which then became a standard component

of the various demos of the Dynamic Federations system. Recent improvements

allow for example to insert seamlessly S3 storage endpoints.

3.3 Create a small local federation of close sites sharing

storage

Having a flexible system that can manage storage federations opens many possi-

bilities. One of them is being able to create a small federation of sites that share

their storage, and appear as a unique storage element. In other words, a common

repository (for example an instance of the so-called ”conditions data” for a High

Energy Physics experiment) may be distributed across collaborating sites. Doing

so, the clients would not need to know the exact location of the file they need, as

they would just access it through the federation frontend.

9

3.4 Add resources managed by one or more replica cata-

logues

We informally define an LFC cloud as a set of storage elements that contain file

replicas that are indexed by an instance of an LFC file catalogue. In this example,

without loss of generality, we suppose that the content of the LFC is accessible

through an HTTP/DAV gateway, like the ones that have been recently released

[10]. Lets suppose that we have two such clouds, as the example fits with no

changes also the case in which there are more.

A ”storage federation engine” acts as unique entry point for the two clouds, by

hiding the fact that they are two. Hence, an HTTP client would contact the main

federations frontend, and will have access to all the metadata from there, because

the frontend machine aggregates and caches on the fly the results of the metadata

queries that are forwarded to the endpoints.

If the client issues an HTTP GET request towards the frontend, this will simply

redirect it to one of the endpoints that have just advertised the availability of the

requested file.

In other words, the client can be redirected to the best endpoint in the most

suitable LFC cloud, with a decision based on:

• availability of the file in the two clouds

• possibly, proximity of the client with respect to all the available endpoints.

The interesting aspect in this example is that no additional indexing of the files

is needed to federate the two LFC clouds, and their internal, local workflow can

remain untouched.

Another worth mentioning point is that also connecting natively to an LFC database

is supported by the architecture, as the corresponding plugin is available as well.

We believe that this kind of feature could be beneficial for Virtual Organisations

whose content is managed by more than one instance of LFC, in different sites.

A worldwide deployment would appear as an unique thing to applications that

benefit from having access to the whole repository. At the same time, the local

workflows and the ownership of the local catalogues would remain, also avoiding

10

the network latency-related issues that may come from having only one catalogue

service for a widely distributed VO.

3.5 Federating file caches

The fact that our Dynamic Federations system applies a dynamic behavior to

the problem of federating storage and metadata endpoints opens the possibility

of federating storage endpoints whose content may change at a faster pace with

respect to a regular storage element. This is the case, for example, of a storage

cluster that acts as a file cache, hence files may appear and disappear, depending

on the pattern of the file requests that it receives.

Such a storage federation that includes caches among its endpoints would have the

benefits that come from both concepts:

• caches would provide their service to the site they belong to, fetching files

from elsewhere and keeping them while they are being actively used

• the same caches would advertise the files that they currently contain to the

federation system.

The outcome of these two points is that the content of a file cache in a given

moment could be used through the federation frontend by some other external

client, or, eventually, by some similar file cache system that is trying to fetch

the file. As a consequence, the federation frontend would have more endpoints

to choose from when asked to redirect a client to a suitable server that hosts

a file resource. This aspect, coupled with some other smart endpoint choosing

criteria like e.g. geographic proximity, would represent a very relevant feature for

a Grid-aware setup. So far, work is foreseen to verify the usability, in the described

context, of the Scalable Proxy Caches [13].

3.6 Allow the system to apply geography-aware redirec-

tion choices

A feature that we implemented in the system internally associates geographical

coordinates and information to each replica that is known to the federation, by

invoking a loadable ”Geo” plugin. The same plugin can associate this information

11

to each client request for locating a replica. As a consequence, the system can

select the replica that is geographically closer to the client that requested it.

An easy implementation of the Geo plugin consisted in wrapping the MMDB API

[12], that seems to provide a more than adequate level of performance (on the

order of one million queries per second, as output by its internal tests). The result

is that the Dynamic Federation system is able to redirect a client to the replica

that is the closest to it, in a very efficient way.

4 The system

The Dynamic Federations system is built around a new internal component that

is called Uniform Generic Redirector (UGR). Ugr exposes an API, called UgrCon-

nector that gives the functionalities of a namespace, thus including file/replica

metadata information and directory listing information.

As visible in Figure 2, the Ugr acts as loader of a set of plugins, which interface

it to the external storage and metadata endpoints. Each kind of plugin can talk

to a different kind of external endpoint (one or many in principle).

Right now we developed the following plugins:

• A WebDAV/HTTP client plugin, that is able to talk to an external Web-

DAV/HTTP server endpoint. This plugin is based on an implementation

of an advanced wrapper client interface (called DAVIX), built using libneon

[14]. This component supports several kinds of authentication, and supports

advanced metadata primitives (e.g. getting file listings with all the metadata

information of the items, in a single transaction).

• A DMLite-client plugin, that is able to use an instance of DMLite as a source

of metadata information. This allows using all the possibilities of integration

offered by DMLite, for instance to connect natively to an LFC database or

to an HDFS cluster.

All the plugins that have been developed so far privilege the internal parallelism,

i.e. they are able to perform N tasks in parallel, where N is a parameter that

needs to be tuned in order to find the right balance between the overall system

performance and the load that can be put towards the endpoints.

12

The set of plugins that are loaded by an Ugr instance (and their configuration)

is written in a configuration file. Each plugin can be loaded multiple times, with

different parameters and prefix-based filename translations.

The typical use of the Ugr is to be loaded by some other frontend system, like

for instance the DMLite library [9]. In this form, Ugr acts as a DMLite plugin,

taking full benefit of its architecture and behavior. DMLite is a pluggable, thin

software layer that gives abstract functionalities of file catalogue and interface to

storage pools. Thanks to its architecture, a very broad range of storage systems

can be accessed, through suitable plugins. DMLite can also be plugged into an

Apache server, thus accessing all of its features through WebDAV.

One of the consequences of this is that, through DMLite, plugging the Ugr into

an Apache server becomes easily feasible, as shown in Figure 2.

Internally, the Ugr acts as a sophisticated handler of parallel requests for meta-

data information. The basic behavior on the trigger of a metadata query is as

follows:

• if the query can be satisfied by the local in-memory namespace cache, just

use the cache to compute the result. Otherwise:

• trigger, in parallel, all the plugins by queueing the query into them, then

wait for the result.

• each plugin may internally decompose the query into subqueries (also paral-

lel, depending on the plugin)

• each plugin acts independently in order to satisfy the query and write its

result into the namespace cache

• when the gathered information is sufficient for that client to get the result,

that client only is signalled so that it can get the desired information.

• the plugins that eventually did not finish the processing just continue, even-

tually updating the content of the cache with the information they may still

gather.

13

Figure 2: Exemplification of the system architecture.

This sequence of actions is performed for any client, in parallel, with no imposed

limits to their concurrency inside Ugr.

In the next sections we show sequence diagrams that explain with some more

details the internal behavior of such a system, in two relevant cases.

4.1 Two clients issue a stat() request

In this example, shown in Figure 3 two clients want to know some metadata infor-

mation about file X, e.g. its size. Hence, they invoke the API of the Ugr service

and get the response. The response is constructed by the aggregation service on

the base of the responses of the various plugins.

The clients get the response as soon as the service gets it from the endpoints

that it aggregates. A successive query for the same information gets a cached

answer, as shown in the diagram.

14

Figure 3: Clients issuing a Stat() request for the same file.

Any primitive describing this behavior (e.g. getting the size of a file) could give

the name to this operation, should the reader be uncomfortable with the choice of

stat of this example.

As previously said, this diagram wants to describe the basic internal interac-

tions of such an aggregator service. The term Client refers here to any system that

is able to invoke the API, single or multithreaded. As discussed, in the current

deployments this client is an instance of DMLite embedded into an Apache server.

4.2 Two clients request the full list of the replicas of a file

In this example, shown in Figure 4, two clients want to know the list of the lo-

cations of file X, eventually through name translations. Hence, they invoke the

API of the Ugr service and get the response. The response is constructed by the

aggregation service on the base of the responses of the various plugins.

15

Any primitive with this behavior (e.g. getting a list of replicas) could give the

name to this operation, should the reader be uncomfortable with the choice of

locateall of this example. Some implementations refer to this functionality with

getreplicas. We wanted to use a different term in order to emphasize the fact that

this specification is implementation-agnostic.

As previously said, this diagram wants to describe the basic internal interac-

tions of such an aggregator service. The term Client refers here to any system

that is able to invoke the API, single or multithreaded. In at least the DPM/LFC

deployments this client will likely be an instance of the DMLite library [9].

The difference with respect to the previous case is that in order to discover all

the replicas of a file the system has to wait for all the plugins to have finished.

In the previous case instead, getting the size of a file just need the answer of the

fastest of the endpoints.

4.3 In-memory volatile namespace and caching

Figure 5 shows how the caching structure of UGR works, in order to cache the

relevant parts of the federation’s namespace.

UGR, in the default setup, is treated as a plugin of the Apache srver, hence it is

subject to its behaviour, related to multiprocessing and multithreading. Normally,

Apache spawns several processes, each one with its own thread pools that serve

HTTP requests.

Each instance of UGR can do its local computations in a fast local workspace,

whose internal behavior is similar to a cache. In order to put in relation the local

workspaces of multiple processes, and optimize their behavior, UGR can connect

to a memcached service, which must be big enough to cache a significant part of

the working set of the storage metadata, i.e. the metadata items that are used

more often by the clients.

16

Figure 4: Clients trying to discover all the locations of the same file.

17

Figure 5: How threads, processes, servers and caches work.

In addition to that, a site hosting the frontend of a large federation may want

to deploy more than one machine, under the same DNS name. In this case we

may want to deploy a memcached service that is accessed by all the machines in

the cluster, like the one shown in Figure 5.

The simple default configuration installs memcached in the same server where

Apache and UGR are installed.

4.4 Simple name translations

UGR embeds a configurable scheme of name translation, which has the purpose

of creating a match between the path prefixes of the resulting global name space

and of the individual name spaces of the endpoints whose content is aggregated.

The complete scheme is shown in Figure 6. Starting from the left, the clients have

the illusion of interacting with a name space that is the federation’s namespace, e.g.

/myfed/dteam/mydir/myfile

which (in the case of a setup with HTTP) may come from an URL like:

18

Figure 6: How the default name translations work in order to federate storage

metadata endpoints.

http://<host>/myfed/dteam/mydir/myfile .

Then, internally, if the path starts with one of the prefixes specified in n2n pfx,

this prefix is stripped from the path and the n2n newpfx is put in its place.

The resulting path/filename is what is handled by the internal workspace, and

propagated to the plugins.

The plugin themselves can implement their own prefix-based name translation,

which appends a prefix before contacting their endpoint.

Setting up the name translations in order to minimize the length of the file-

names in the internal workspace is a very good idea.

5 Typical deployment of a Dynamic Federations

frontend

UGR is a very generic component that can be used in a variety of ways that are

agnostic of the communication protocol that is used to talk to the clients. By

typical deployment we mean a description of the default configuration that comes

when installing it from the official packages.

19

In this case, UGR is used to create storage federations based on the HTTP/Web-

DAV protocols, using Apache2 as frontend, and the DMLite library both as an

adaptor between Apache and UGR, and as an optional way to aggregate other

external metadata sources (like site-local instances of DPM and LFC).

Figure 7 shows how the default deployment of an UGR frontend looks like:

• Apache2 is the frontend to the clients;

/etc/ugr/zlcgdm-ugr-dav.conf is the file that defines the virtual server

that is fed through lcgdm dav and DMLite;

• lcgdm dav is the Apache module that is able to talk to DMLite, and to use

it as a source of information;

• DMLite is a pluggable layer that provides storage element functionalities;

/etc/ugr/ugrdmlite.conf is a DMLite configuration file, which loads UGR

as a source of metadata.

• UGR is loaded as DMLite plugin that provides name space information;

/etc/ugr.conf is the file that configures UGR.

• UGR has its internal high performance buffer caches, and is more efficient

with an external memcached instance that synchronizes their content, acting

as a 2nd level cache.

• The loaded plugins have their own configuration parameters. In the case of

the HTTP/DAV plugin, the parameters are set in the same Ugr configuration

file.

6 Configuration parameters reference

In this section, we document the UGR configuration directives and their usage. In

the default deployment, these directives are contained in the /etc/ugr.conf con-

figuration file.

20

Figure 7: Configuration structure of the typical deployment.

21

6.1 Ugr core configuration

6.1.1 INCLUDE

Interpret as configuration files all the files that are contained in the give directory.

Only absolute paths are accepted.

Syntax:

INCLUDE: <path>

<path> is a directory containing Ugr configuration files.

The configuration files are loaded and processed by the Ugr configuration subsys-

tem in ascending alphabetic order.

Example:

Load all the configuration files that are contained in /etc/ugr.conf.d/

INCLUDE: /etc/ugr.conf.d/

6.1.2 glb.debug

Sets the UGR log verbosity.

Syntax:

glb.debug: <level>

<level> is the desired debug level, from 0 to 10.

NOTE: UGR internally uses syslog to log its activity, in the user class. We

refer to the syslog documentation for the platform in use in order to configure its

behavior, e.g. to output the log to a logfile.

NOTE: a debug level higher than 1 severely affects the performance of UGR.

Never set it to a value higher than 1 in a production server.

22

6.1.3 glb.debug.components[]

Allows selecting the internal components that produce log lines. By default all

the internal components produce log activity. The presence of this directive in the

configuration file allows only the named components to produce log lines.

Individual plugins are selectable under the name locplugin.<plugin_name> Every

glb.debug.components[] line that appears in the configuration is considered as an

individual component to enable log production for.

Syntax:

glb.debug.components[]: <log_component>

Example:

glb.debug.components[]: <locplugin.MYSITE>

glb.debug.components[]: <locplugin.MYOTHERSITE>

6.1.4 glb.addchildtoparentonput

When a federator handles the writing of a new file (PUT for HTTP), it nor-

mally tries to add the new item to the listing of the parent directory. Setting

glb.addchildtoparentonput to false disables this behavior, and may reduce the

CPU usage for applications that create many files.

Syntax:

glb.addchildtoparentonput: <true | false>

Example:

glb.addchildtoparentonput: <false>

6.1.5 glb.addchildtoparentonstat

When a federator computes the stat() information for a file, it normally tries to

add the new item to the listing of the parent directory in the case it is already in

the first level cache.

23

Setting glb.addchildtoparentonstat to false disables this behavior, and may

reduce the CPU usage, especially for listing operations of large directories.

Syntax:

glb.addchildtoparentonstat: <true | false>

Example:

glb.addchildtoparentonstat: <false>

6.1.6 glb.locplugin

Load an UGR location plugin. This directive can be specified many times, thus

loading several plugins.

Syntax:

glb.locplugin[]: <path/name.so> <ID> <max_concurrency> [parameters]

where:

• <path/name.so> is the full path to the shared library that implements the

plugin

• <ID> is a unique name that is given to this plugin instance. This is used to

identify it in this configuration file, and give settings that are private to that

loaded instance. These other settings have the syntax:

locplugin.<ID>.<parm>: <value>

where ¡parm¿ is the plugin-specific parameter that we want to set.

• <max_concurrency> is the maximum number of threads that can enter the

plugin at the same time

• [parameters] is a plugin-specific series of space-limited parameters

24

6.1.7 glb.waittimeout

The maximum time in seconds that a client can wait for some information to be

collected by UGR. This is just a guard time. If reached, some external endpoint

may be overloaded or not responsive. In this case, UGR may decide to internally

treat it as disabled, until it becomes responsive again.

Syntax:

glb.waittimeout: <number>

Default value: 180

6.1.8 glb.maxlistitems

Mark as non listable any directory that contains more than a certain number of

items. This avoids thrashing the cache in difficult situations. This setting deals

only with listing, not with the metadata of the individual files or subdirectories

that are needed by the clients. In other words, the items in the directory are

always accessible, no matter how many they are.

Syntax:

glb.maxlistitems: <number>

Default value: 10000

6.1.9 glb.filterplugin

A filter plugin is a generic way of filtering a list of replicas before it is given to

the requesting client. The typical usage example is to sort a list of replicas to be

given to a client in ascending geographical distance from it.

Syntax:

glb.filterplugin[]: <plugin path> <plugin parameters>

Example:

Sort all the replicas in ascending geographical distance from the client. glb.filterplugin[]:

libugrgeoplugin_geoip.so geoplug1 /usr/share/GeoIP/GeoLiteCity.dat

6.2 Global name translation

UGR can process the file paths it is requested, in order to normalize them by

means of prefix substitutions. The typical case is to internally remove the prefix

25

that is instead present in the requests.

6.2.1 glb.n2n pfx

glb.n2n_pfx defines a list of prefixes which will be substituted by glb.n2n_newpfx

during name translation. If more than one prefix is defined then matches will be

tried with the longest prefix first and the first match will be accepted.

Syntax:

glb.n2n_pfx: <string_prefix> [<string_prefix> ...]

Default value: none

Example:

glb.n2n_pfx: /myfed

If the requested path starts with /myfed, remove this prefix, so that internally

in UGR that file is known without prefix.

If the user requests /myfed/atlas/fabrizio/testfile.txt, internally the file will be

known as /atlas/fabrizio/testfile.txt

The practical consequence of this example is that the federation will be browseable

with the prefix “myfed”, like:

http://myfederation.myhost/myfed/<path>/<file>

6.2.2 glb.n2n newpfx

After having eventually stripped out a prefix with the n2n_pfx directive, replace

it with a new prefix.

Syntax:

glb.n2n_newpfx: <string_prefix>

Default value: none

6.3 Slave plugins and replica translators

A replica translator plugin is a plugin that contacts an endpoint as an external

service in order to:

• get file listing information to be merged into the UGR internal namespace

26

• given a logical file name, get a list of replicas that are known to this service,

and ask other plugins for a realtime validation.

The typical usage of this behavior is to use an external service like the LFC

(or any other similar service) as a replica name lookup.

What characterizes a plugin that is marked as a replica translator plugin is

the fact that every replica that the service finds is proposed for validation to the

plugins that are marked as slave. Replica translator plugins do not insert repli-

cas into the internal name space, they delegate this action to the plugins that are

marked as slave. These slave plugins have the responsibility of checking the entries

and eventually insert them into the UGR name space. The most basic check that

such a slave plugin may perform is to make sure that the endpoint is considered

as online and working. More advanced checks may include actually verifying the

presence of that file in that endpoint.

To mark a plugin as a replica translator the syntax is:

locplugin.<ID>.replicaxlator: true (default: false)

To mark a plugin as a slave the syntax is:

locplugin.<ID>.slave: true (default: false)

6.4 Plugin-level filename prefix translation

Every plugin can apply a private rule to translate filename prefixes from the end-

point’s name space to the UGR name space. As an additional feature, this prefix

translating rule may specify more than one prefix that can be recognized and

translated to the internal UGR namespace.

When the xlatepfx directive is specified, the plugin will be triggered only if the

incoming query matches one of the given endopint.

27

6.4.1 Example: Translate SRM TURLs into HTTP URLs

An advanced example for which this feature is used is to translate srm:// TURLS

coming from external services like an LFC or a replica database. For the plugin

being configured we want to specify that both backward-compatible srm syntaxes

must be correctly recognised and translated.

Let’s suppose that the UGR is asked for the file:

/myfed/atlas/data/file1.dat

The global name translation of the UGR (described and configured like in 6.2)

translates this file into the internal structure of the UGR namespace:

/atlas/data/file1.dat

An HTTP location plugin is used as a master translation plugin. This queries

an external service and returns a replica that may follow one of the two possible

syntaxes for SRM TURLs.

srm://host1.site.org/dpm/site.org/atlas/datadisk/xyzw/file1_replica1.dat

srm://host2.site.org:8446/srm/managerv2?

SFN=/dpm/site.org/atlas/datadisk/xyzw/file1_replica1.dat

We want to map these two TURLs to the new HTTP-based service setup by

the site. This service resides in the machine host3.site.org that is different from

the hosts that give the SRM service. In this service, we are told by the sysadmin

that the path for the aforesaid replica is:

https://host3.site.org/bigstorage/atlas/datadisk/xyzw/file1_replica1.dat

To do this, we have to:

• configure a slave plugin named HOST3 that manages the endpoint host3.site.org,

in order to check for the replicas indicated by the master translator plugin.

28

• configure the plugin-level filename prefix translation of this plugin, described

in the following directive.

6.4.2 locplugin.<ID>.pfxmultiply

Search for a metadata item in multiple directory prefixes on the given plugin. The

effect of this directive is to merge the content of several directories into one. An

use case can be to see as merged the content of multiple directories representing

space tokens in a remote storage.

Syntax:

locplugin.<ID>.pfxmultiply: <prefix_1> [... <prefix_N>]

Example:

This example says that this plugin has to consider as merged the content of 9

spacetoken directories in the given endpoint.

locplugin.MYPLUGIN.pfxmultiply: /disk-only/atlasgroupdisk/perf-tau

/disk-only/atlasgroupdisk/perf-idtracking

/disk-only/atlasgroupdisk/perf-egamma /disk-only/atlashotdisk

/disk-only/atlasdatadisk /atlaslocalgroupdisk

/disk-only/atlasproddisk /disk-only/atlasgroupdisk/soft-test

/disk-only/atlasscratchdisk

6.4.3 locplugin.<ID>.xlatepfx

Sets up the path/name translation that the plugin identified by <ID> can apply,

in order to match the namespace of the endpoint it manages to the federation’s

namespace.

Simply speaking, this directive can be used to ’mount’ a directory tree of the re-

mote endpoint into the federation’s namespace.

A side effect if this directory is that the plugin will be triggered only if the

incoming query matches its namespace.

29

Another example tat makes use of this directive is to convert an SRM TURL

got by some other service. In practice an SRM prefix has to be deleted and replaced

with the HTTP URL of the remote HTTP endpoint.

Syntax:

locplugin.<ID>.xlatepfx: <query_prefix_1> [... <query_prefix_N>]

<prefix_to_substitute>

Where:

<query_prefix_1> [... <query_prefix_N>] is a set of prefixes that will be

matched against the incoming query. They may identify an SRM endpoint or

just a part of the query string that has to be internally removed in order to match

the namespace of the remote endpoint. These prefixes, if found, will be internally

stripped and substituted.

<prefix_to_substitute> is the prefix that has to be put to match the names-

pace of the remote endpoint.

Example:

locplugin.HOST3.xlatepfx: /browseatlas /atlas/atlasdatadisk/rucio

This example will show to the user a directory named browseatlas”. Browsing

this directory will show the content gathered from /atlas/atlasdatadisk/rucio”

from the remote endpoint.

Example:

locplugin.HOST3.xlatepfx:

srm://host2.site.org:8446/srm/managerv2?SFN=/dpm/site.org/atlas/

srm://host2.site.org/dpm/site.org/atlas/ /

This example serves to federate a DPM endpoint as a slave replica checker.

30

A file named in DPM

srm://host1.site.org/dpm/site.org/atlas/datadisk/xyzw/file1_replica1.dat would

be known as

/datadisk/xyzw/file1_replica1.dat in the internal UGR workspaces and caches.

6.5 Infohandler advanced parameters

The infohandler parameters influence how the internal UGR buffers collect and

reconstruct the information that comes from the endpoints, and act as a fast in-

memory first level cache.

6.5.1 infohandler.maxitems

Set the maximum number of items in the cache.

Syntax:

infohandler.maxitems: <number>

Default value: 1000

6.5.2 infohandler.itemttl

Set the maximum time (in seconds) an item is allowed to stay in the cache after

it has been referenced.

Syntax:

infohandler.maxttl: <number>

Default value: 600

6.5.3 infohandler.itemmaxttl

Set the maximum time (in seconds) an item is ever allowed to stay in the cache

(even if it was referenced in the meantime).

Syntax:

infohandler.itemmaxttl: <number>

Default value: 3600

31

6.5.4 infohandler.itemttl negative

Set the maximum time (in seconds) a negative information (like a ”file not found”

error) is allowed to stay in the cache. Syntax:

infohandler.itemttl: <number>

Default value: 10

6.5.5 infohandler.useextcache

If true, instantiate a 2nd level cache that uses memcached. This cache will be

shared among all the processes that are spawned.

This cache will also be used to store other information, like the status of the

endpoints, whose determination can be shared among multiple processes running

Ugr. Syntax:

infohandler.useextcache: <true|false>

Default value: true

6.6 extcache.memcached.server[]

In the case the infohandler.useextcache is set to true, UGR will try to contact an

external memcached cluster. This section describes the parameters that configure

that.

Syntax:

extcache.memcached.server[]: <IP_address>[:port]

Add one memcached server to contact. Multiple entries like this add multiple

servers to contact, in order to support advanced memcached clustering configura-

tions.

Default value: 127.0.0.1:11211

32

6.6.1 extcache.memcached.ttl

Set the maximum time (in seconds) an item is allowed to live in the external mem-

cached. Syntax:

extcache.memcached.ttl: <number>

Default value: 43200

6.6.2 extcache.memcached.useBinaryProtocol

Enable/disable the memcached binary protocol. Syntax:

extcache.memcached.useBinaryProtocol: <true|false>

Default value: true

6.7 Authorization of groups and users

When plugged into a DMLite setup (which is the normal way), Ugr can apply

authorization schemes to the incoming requests.

In order to make this effective, the frontend (normally Apache) must be config-

ured in order to apply a form of authentication to the incoming clients. The Ugr

authorization scheme will honour the user and groups information that is filled by

the frontend. No restrictions are applied to the kind of authentication applied by

the frontend. For Grid usage, this is normally X509 with VOMS extensions, and

also other Web-specific forms of authentication are supposed to work, e.g. Google,

Facebook IDs, Federated Identities, etc. , provided that the frontend supports and

correctly processes them.

Please note that the Ugr authorization is applied after any possible name groups

or fqan translation that the frontend may apply. This is valid also for the gridmap

translations that the sysadmin may want to configure in the system.

Authentication in Ugr is plugin-based. All the authorization plugins are executed

sequentially for the same query, until one that grants access is found. If no plugin

that grants access is found, then access is denied.

In the absence of additional authorization plugins to load, Ugr always has in mem-

ory a default implementation that implements a simple rule-based scheme.

33

Important: the simple rule-based scheme always grants authorization

if no rules are given. To allow any other plugin to deny authorization

there must be at least one rule defined.

What follows are the default authorization directives.

6.7.1 glb.allowusers[]

Add a rule that authorizes a specific user to read, write into, or list. Spaces in the

username are supported only if the username is enclosed in double quotes.

The rule applies to all the URLs whose path matches the given prefix. Please note

that the rule applies to the full URL, inclusive of path prefixes that other Ugr

directives may mask or translate.

Syntax:

glb.allowusers[]: <username> <path prefix> [r][w][l][d]

Parameters:

• username : the username or DN to match this rule

• path prefix : the path prefix this rule applies to

• read ”r” , write ”w” , list ”l” , delete ”d”

Example:

This example authorizes the anonymous user to get metadata, redirections and

listings from the /fed/atlas prefix.

glb.allowusers[]: nobody /fed/atlas rl

6.7.2 glb.allowgroups[]

Add a rule that authorizes a specific group to read, write into, or list. Spaces in

the username are supported only if the username is enclosed in double quotes.

34

If the groupname ends with * then it is treated as a wildcard that will match all

the group names or FQANs that start with the given string. As a consequence, the

string ”*” will match with any group name or FQAN that the client may present,

but will not match with an empty FQAN list.

If the groupname is an empty string enclosed in double quotes (””) then the rule

will match incoming requests that have an empty list of FQANs.

In any case, the rule applies to all the URLs whose path matches the given prefix.

Please note that the rule applies to the full URL, inclusive of path prefixes that

other Ugr directives may mask or translate.

Syntax:

glb.allowgroups[]: <groupname or fqan> <path prefix> [r][w][l][d]

Parameters:

• username : the username or DN to match this rule

• path prefix : the path prefix this rule applies to

• read ”r” , write ”w” , list ”l” , delete ”d”

Example:

This example authorizes any user that is reported to belong to the ’atlas’ group

to get metadata, redirections and listings from the /fed/atlas prefix.

glb.allowgroups[]: atlas /fed/atlas rl

Important:

All the auth plugins are checked for a given query, including the default one. If

the default plugin has not to grant any authorization, then it has to be explicitely

configured to do so, by giving rules that always result in a denial. Example:

glb.allowusers[]: nouser /nodir r

glb.authorizationplugin[]: libugrauthplugin_python26.so authplug1

ugrauth_example isallowed

35

6.7.3 glb.authorizationplugin

An authorization plugin is a plugin that implements some form of decision whether

to authorize a request coming from a client.

Syntax:

glb.authorizationplugin[]: <auth plugin library name> <plugin_name> <Python

module to import> <Python function to invoke>

Example:

To authorize a client, invoke the function isallowed() from the python module

ugrauth_example.py. glb.authorizationplugin[]: libugrauthplugin_python26.so

authplug1 ugrauth_example isallowed

6.7.4 The Python authorization plugin

The Python authorization plugin invokes a function from a Python module to de-

termine if a request coming from a client has to be authorized.

Please note that no script is executed or spawned, and the python function is in-

voked natively, using the python C API. This keeps performance high.

Syntax:

glb.authorizationplugin[]: libugrauthplugin_python26.so <plugin_name> <Python

module to import> <Python function to invoke>

Mandatory signature of the Python function:

def <any_func_name>(clientname=unknown”, remoteaddr=”noIP”, resource=”none”,

mode=”0”, fqans=None, keys=None)”

The module that is imported must be in a directory fulfilling one of these con-

ditions:

• it’s a directory contained in the PYTHONPATH environment variable as

evaluated within the Apache daemon

• the directory is /etc/ugr.conf.d/

Both the directory and the Python module must be readable and executable by

the user running the apache daemon.

36

Parameters:

• clientname : the username or DN of the client

• remoteaddr : IP address of the client

• resource : the filename or directory name for which the operation has been

requested

• mode : read ”r” , write ”w” , list ”l” , delete ”d”

• fqans : list of groups or FQANS the user belongs to. VOMS roles will appear

here.

• keys : list of other authentication keys that Apache has filled while authen-

ticating the client.

The function’s Return value is an integer. A zero value means that the access is

granted. A nonzero value means that the access is denied. A non callable function

means that the access is denied.

Example: To authorize a client, invoke the function isallowed() from the

python module ugrauth_example.py that is available in the directory /etc/ugr.conf.d

.

glb.authorizationplugin[]: libugrauthplugin_python26.so authplug1 ugrauth_example

isallowed

Example Python module:

#!/usr/bin/python

-*- coding: utf-8 -*-

Simple script that prints its arguments and then decides if the user

has

to be authorized

37

usage:

ugrauth_example.py clientname remoteaddr <fqan1> .. <fqanN>

import sys

def isallowed(clientname="unknown", remoteaddr="nowhere",

resource="none", mode="0", fqans=None, keys=None):

print "clientname", clientname

print "remote address", remoteaddr

print "fqans", fqans

print "keys", keys

print "resource", resource

return 0

#------------------------------

if __name__ == "__main__":

isallowed(sys.argv[1], sys.argv[2:])

"

Warning: depending on the frontend (typically Apache) configura-

tion, the python module may clash with other modules loaded by the

frontend. A typical example is mod wsgi for Apache, which must be

disabled for the ugr auth python module to work.

6.8 Location Plugin

The Location plugins (dmlite, lfc, DAV, HTTP, etc) have in common a group of

parameters.

6.8.1 locplugin.<ID>.listable

Enable listing operations (e.g PROPFIND) on the collections referenced by the

plugin.

Syntax:

38

locplugin.<ID>.readable: <true|false>

Default value: true

6.8.2 locplugin.<ID>.readable

Enable read operations (e.g GET, HEAD, PROPFIND) on the resources refer-

enced by the plugin.

Syntax:

locplugin.<ID>.readable: <true|false>

Default value: true

6.8.3 locplugin.<ID>.writable

Enable write operations (e.g PUT) on the resources referenced by the plugin.

Syntax:

locplugin.<ID>.writable: <true|false>

Default value: false

6.8.4 locplugin.<ID>.max latency

Define the maximum time that is allowed for an operation.

If max latency milliseconds are exceeded in any metadata operation, a warning

will be printed in the log.

If max latency milliseconds are exceeded in a periodic check operation, the plugin

will be put offline.

Syntax:

locplugin.<ID>.max_latency: <ms>

Default value: 10000

39

6.9 DAV and HTTP plugin

The DAV plugin, when loaded as a location plugin instance, points to an external

DAV or HTTP endpoint, to consider its content as part of the storage federation.

Syntax:

glb.locplugin[]: /usr/lib64/ugr/libugrlocplugin_dav.so <ID> <concurrency>

<URL prefix>

or glb.locplugin[]: /usr/lib64/ugr/libugrlocplugin_http.so <ID> <concurrency>

<URL prefix>

The parameters <ID> and <concurrency> have already been described in the

section 6.1.6

The parameter URL prefix is the URL prefix that points to the endpoint to be

federated. Both http:// and https:// are supported. Please note that if a prefix

of the files stored in the external storage has to be ignored, then it can be added

to this URL prefix. This is a basic way of implementing a simple algorithmic,

prefix-based name translation that is similar to the concept of chroot jail with

respect to the sshd configuration.

A typical example of this is the following:

glb.locplugin[]: /usr/lib64/ugr/libugrlocplugin_dav.so dav_plugin_dcache_desy

30 http://sligo.desy.de:2880/pnfs/desy.de/data

where the prefix /pnfs/desy.de/data has to be stripped in order to consider

the files as belonging to a uniform name space.

In other words, a file whose name inthe storage element is:

/pnfs/desy.de/data/atlas/fabrizio/testfile.txt

will be known to UGR as

/atlas/fabrizio/testfile.txt

The DAV plugin has several parameters that configure the way it works and

40

authenticates with the servers. For all these parameters, <ID> is the name that

was assigned to the specific plugin instance we want to refer to.

6.9.1 locplugin.<ID>.ssl check

Enable or disable the SSL validity check of the remote host.

Syntax:

locplugin.<ID>.ssl_check: <true|false>

Default value: true

6.9.2 locplugin.<ID>.ca path

Add a X509 certificate authorities directory, each CA file contained inside the di-

rectory will be considered as a valid CA for the plugin requests.

Syntax:

locplugin.<ID>.ca_path: <path/ca_dir>

Default value: true

6.9.3 locplugin.<ID>.cli type

Type of the client side credential to use. The format type PEM, PROXY (VOMS)

and PKCS12 are supported. Syntax:

locplugin.<ID>.cli_type: (PEM|PKCS12|PROXY)

Default value: PKCS12

6.9.4 locplugin.<ID>.cli private key

Path to a local file containing the client private key to use when contacting this

endpoint. Only the PEM and proxy format are supported.

Syntax:

locplugin.<ID>.cli_private_key: <path/file>

Default value: none

41

6.9.5 locplugin.<ID>.cli certificate

Path to a local file containing the client side credentials to use when contacting

this endpoint. Only the PEM, proxy and PKCS12 format are supported.

Syntax:

locplugin.<ID>.cli_certificate: <path/file>

Default value: none

6.9.6 locplugin.<ID>.conn timeout

TCP connection timeout (in seconds) to use when establishing a connection to

this endpoint.

Syntax:

locplugin.<ID>.conn_timeout: <timeout>

Default value: 15

6.9.7 locplugin.<ID>.custom header[]

Additional header fields to populate the requests with. Syntax:

locplugin.<ID>.custom_header[]: <header line>

Default value: none

Example: locplugin.<ID>.custom_header[]: X-Rucio-Auth-Token: blah123

6.9.8 locplugin.<ID>.ops timeout

TCP communication timeout (in seconds) to use when sending/receiving data from

this endpoint.

Syntax:

locplugin.<ID>.ops_timeout: <timeout>

Default value: 60

42

6.9.9 locplugin.<ID>.status checking

Enable or disable the asynchronous endpoint status checker. If enabled, the end-

point will be probed at regular intervals of time.

Syntax:

locplugin.<ID>.status_checking: <true|false>

Default value: true

6.9.10 locplugin.<ID>.status checker frequency

Set the frequency (in milliseconds) of the status checker.

Syntax:

locplugin.<ID>.status_checker_frequency: <time>

Default value: 10000

6.9.11 locplugin.<ID>.auth login

Set the username to use in the case of endpoints that support user/pasword login.

Syntax:

locplugin.<ID>.auth_login: <username>

Default value: none

6.9.12 locplugin.<ID>.auth passwd

Set the password to use in the case of endpoints that support user/password login.

Syntax:

locplugin.<ID>.auth_passwd: <password>

Default value: none

6.9.13 locplugin.<ID>.metalink support

Enable or disable the metalink support for the plugin.

The metalink support give the possibility of the federation to query a list of replica

43

of a given resource.

Metalink support allows for instance the construction of recursive federations.

Syntax:

locplugin.<ID>.metalink_support: <true|false>

Default value: false

6.10 S3 plugin

The S3 plugin is a location plugin allowing to include a bucket of Simple Storage

Service Cloud Storage as part of the namespace. The S3 plugin supports read,

write and list operations.

The S3 plugin supports the AWS credential delegation mechanism. The feder-

ation clients are redirected to the federated Cloud storage already authenticated

via the AWS query string authentication mechanism.

The S3 plugin accepts the parameters of the HTTP plugin, plus a few that are

related to the AWS signing process, listed here.

Syntax:

glb.locplugin[]: libugrlocplugin_s3.so <ID> <concurrency> <URL prefix>

6.10.1 locplugin.<ID>.s3.priv key

Setup the AWS private key used for the S3 authentication.

Syntax:

locplugin.<ID>.s3.priv_key: <AWS secret key>

6.10.2 locplugin.<ID>.s3.pub key

Setup the AWS access key used for the S3 authentication.

Syntax:

locplugin.<ID>.s3.pub_key: <AWS access key>

44

6.10.3 locplugin.<ID>.s3.region

Sets the S3 region parameter that has to be used for the S3 signing algorithm

version 4. Setting this parameter automatically enables the S3 signing algorithm

version 4, using the given S3 region parameter.

Syntax:

locplugin.<ID>.s3.region: <AWS region>

6.10.4 locplugin.<ID>.s3.signaturevalidity

The S3 signatures computed by this plugin will expire after the given number of

seconds. Default is one hour.

A signed URL has to be requested to Dynafed in the moment it is

used. Storing a signed URL or caching it in the client is a question-

able practice, at best.

The typical example for this is a batch job. As the queueing time for

the job is not predictable, the job should be given the plain HTTP(s)

URL that has to be used against Dynafed by the job itself when it

starts.

Please note that the signature validity must be longer than the max-

imum TTL of entries in the internal or external cache (the parameters

infohandler.itemmaxttl and extcache.memcached.ttl)

Syntax:

locplugin.<ID>.s3.signaturevalidity: <number of seconds>

6.10.5 locplugin.<ID>.s3.alternate

When using the default S3 signing algorithm (denominated v2 in the Amazon

documentation), by default the URL prefix will have to be in the following format:

s3://<bucket_name>.s3.amazonaws.com

45

where the bucket name appears in the hostname part of the URL.

Example:

s3://mybucket.s3.amazonaws.com or:

s3://mybucket.<any S3 service domain>

If the boolean parameter alternate is set to true, the Dynafed S3 plugin will

expect an alternate syntax for that URL, with the bucket name in the path:

s3://s3-<S3_region_name>.amazonaws.com/mybucket or:

s3://<any S3 service hostname>/mybucket

Please consult your provider of Cloud storage to verify which URL format has

to be used for the specific case. Amazon S3 recommends the default host-based

one.

Syntax:

locplugin.<ID>.s3.alternate: <yes|true>

Any value that is different from yes or true will be treated as a boolean value of

false.

6.11 GeoIP plugin for geographical information (obsolete)

The GeoIP plugin uses the GeoIP library produced by MaxMind [12] in order to

extract geographical information for:

• the remote client that is querying Dynafed

• URLs of the remote replicas that Dynafed looks up

This geographical information is used internally by Dynafed to choose the

replica that is closest to the client, for redirection purposes. The kind of database

that works best for the purposes of Dynafed is denominated ”GeoLite City”. A

free version can be downloaded from the website http://www.maxmind.com

46

Syntax:

glb.filterplugin[]: libugrgeoplugin_geoip.so geoplug1 <path to the GeoLiteCity

DB>

Example:

glb.filterplugin[]: libugrgeoplugin_geoip.so geoplug1 /usr/share/GeoIP/GeoLiteCity.dat

NOTE: as of 2017, MaxMind does not support GeoIP anymore. The GeoIP

library is still available in the common Linux distributions and is usable (through

this plugin) by anyone who owns one of the MaxMind’s older database files. Please

refer to Section 6.12 for the newer library.

6.11.1 glb.filterplugin.geoip.fuzz

Tells to the GeoIP plugin to apply a fuzz value when sorting replicas according to

their distance from the client. The unit of measure is kilometers, although some

numerical approximation is to be expected.

This has the effect of load balancing sites that are within ’fuzz’ kilometers from

the client.

Syntax:

glb.filterplugin.mmdb.fuzz: <number>

Example:

Load balance among replicas that are within a distance range of 10Km from the

client.

glb.filterplugin.mmdb.fuzz: 10

6.12 MaxMindDB plugin for geographical information

The MaxMindDB plugin uses the MaxMindDB library produced by MaxMind [12]

in order to extract geographical information for:

• the remote client that is querying Dynafed

• URLs of the remote replicas that Dynafed looks up

47

This geographical information is used internally by Dynafed to choose the

replica that is closest to the client, for redirection purposes. The kind of database

that works best for the purposes of Dynafed is denominated ”GeoLite2 City”. A

free version can be downloaded from the website http://www.maxmind.com

Syntax:

glb.filterplugin[]: libugrgeoplugin_mmdb.so geoplug1 <path to the GeoLiteCity

DB>

Example:

glb.filterplugin[]: libugrgeoplugin_mmdb.so geoplug1 /usr/share/GeoIP/GeoLite2-City.mmdb

6.12.1 glb.filterplugin.mmdb.fuzz

Tells to the GeoIP plugin to apply a fuzz value when sorting replicas according to

their distance from the client. The unit of measure is kilometers, although some

numerical approximation is to be expected.

This has the effect of load balancing sites that are within ’fuzz’ kilometers from

the client.

Syntax:

glb.filterplugin.mmdb.fuzz: <number>

Example:

Load balance among replicas that are within a distance range of 10Km from the

client.

glb.filterplugin.mmdb.fuzz: 10

6.13 Microsoft Azure plugin

The Azure plugin is a location plugin allowing to include a container of Microsoft

Azure Storage as part of the namespace. The Azure plugin supports read, write,

delete and list operations.

NOTE: Writing to an Azure-type endpoint needs a particular HTTP

workflow to be able to upload files larger than 128MB. So far the DAVIX

client supports it natively, thus DAVIX can write files of any size to an

Azure endpoint. The maximum file size that other common mainstream

48

clients can upload to an Azure storage may be limited to 128MB un-

less the client is used in a proper program or script that performs the

operations that an Azure endpoint expects to upload a large file. For

reading instead, any HTTP mainstream client will work with no known

limitations.

The Azure plugin supports the Azure credential delegation mechanism. The

federation clients are redirected to the federated Cloud storage already authenti-

cated via the Azure REST query string authentication mechanism.

The Azure plugin accepts the parameters of the HTTP plugin, plus a few that are

related to the Azure signing process, listed here.

Syntax:

glb.locplugin[]: libugrlocplugin_azure.so <ID> <concurrency> <URL prefix>

6.13.1 locplugin.<ID>.azure.key

Setup the Azure key used for the Azure REST authentication. This key can be

found in the Microsoft Azure online console.

Syntax:

locplugin.<ID>.azure.key: <Azure key>

6.13.2 locplugin.<ID>.azure.signaturevalidity

The Azure signatures computed by this plugin will expire after the given number

of seconds. Default is one hour.

A signed URL has to be requested to Dynafed in the moment it is

used. Storing a signed URL or caching it in the client is a question-

able practice, at best.

The typical example for this is a batch job. As the queueing time for

the job is not predictable, the job should be given the plain HTTP(s)

URL that has to be used against Dynafed by the job itself when it

starts.

49

Please note that the signature validity must be longer than the max-

imum TTL of entries in the internal or external cache (the parameters

infohandler.itemmaxttl and extcache.memcached.ttl)

Syntax:

locplugin.<ID>.azure.signaturevalidity: <number of seconds>

6.14 DAVrucio plugin

The DAVrucio plugin, when loaded as a location plugin instance, points to an

external DAV or HTTP endpoint, to consider its content as part of the storage

federation.

It allows to browse and access a federation of remote sites that host content that

is managed by the ATLAS experiment rucio data management system.

The DAVrucio plugin works like the generic DAV plugin, and adds a directive that

enables the hash-based name translation of the rucio data management system.

Syntax:

glb.locplugin[]: /usr/lib64/ugr/libugrlocplugin_davrucio.so <ID> <concurrency>

<URL prefix>

In other words, the DAVrucio plugin will make the federation export two aliased

namespaces, with the same file content accessible through different paths:

• A human-browseable path obtained by just merging the namespaces of the

remote endpoints.

• A non-browseable path that does not contain the rucio hashes after the rucio

token. This path is more suitable for jobs.

6.14.1 locplugin.<ID>.xlatepfx ruciohash

Specifies the sets of prefixes that when matched will make the plugin apply the

rucio hash-based name translation to it, in alternative to the regular xlatepfx

50

translation.

Sets up the path/name translation that the plugin identified by <ID> can apply,

in order to match the namespace of the endpoint it manages to the federation’s

namespace.

Simply speaking, this directive can be used to ’mount’ a directory tree of the re-

mote endpoint into the federation’s namespace.

It should be noted that the xlatepfx ruciohash directive does not imply that a

rucio scope can be browsed in a flat way, without rucio hashes in the path.

Syntax:

locplugin.<ID>.xlatepfx_ruciohash: <query_prefix_1> [...

<query_prefix_N>] <prefix_to_substitute>

Default value: none

Example:

glb.locplugin[]: /usr/local/lib64/ugr/libugrlocplugin_davrucio.so KIT 5

https://f01-060-110-e.gridka.de:2880/pnfs/gridka.de/atlas

locplugin.KIT.ssl_check: false

locplugin.KIT.cli_type:PROXY

locplugin.KIT.cli_certificate: /tmp/xyzproxy

locplugin.KIT.cli_private_key: /tmp/xyzproxy

locplugin.KIT.xlatepfx: /browseatlas /

locplugin.KIT.pfxmultiply: /disk-only/atlasgroupdisk/perf-tau

/disk-only/atlasgroupdisk/perf-idtracking

/disk-only/atlasgroupdisk/perf-egamma /disk-only/atlashotdisk

/disk-only/atlasdatadisk /atlaslocalgroupdisk

/disk-only/atlasproddisk /disk-only/atlasgroupdisk/soft-test

/disk-only/atlasscratchdisk

locplugin.KIT.xlatepfx_ruciohash: /atlas /

This example configures an endpoint with the DAVrucio plugin. It has the

following relevant features:

51

• An user will be able to browse the content of the federation pointing the

browser to <URL_prefix>/browseatlas/. He will browse it as a regular stor-

age federation containing this site. Hence, the rucio hashes will be visible

and will give the “hierarchical” feeling.

• The content of all the specified “spacetoken directories” will be seen as

merged.

• Any file will be reacheable with an URL like

<URL_prefix>/browseatlas/rucio/data13_8TeV/11/b4/

log.01387999._000012.job.log.tgz.2 (click-on browser use case)

• Any file will be reachable ALSO with an URL like

<URL_prefix>/atlas/rucio/data13_8TeV/

log.01387999._000012.job.log.tgz.2 (use case of a job accessing one file)

6.15 DMLite client plugin

The DMLite client plugin, when loaded as a location plugin instance, instantiates

a DMLite instance as a source of metadata information to federate. The typical

usage is to contact natively an LFC or DPM database, for increased performance.

Syntax:

glb.locplugin[]: /usr/lib64/ugr/libugrlocplugin_dmliteclient.so <ID>

<concurrency> <config>

The parameters <ID> <concurrency> have already been described in the section

6.1.6

The parameter <config> is the full path to a DMLite configuration file. To

configure DMLite, we refer the reader to the DMLite documentation.

Acknowledgment

This work was partially funded by the EMI project under European Commission

Grant Agreement INFSO-RI-261611

52

References

[1] IBM Glamour http://www.almaden.ibm.com/storagesystems/projects/glamour/.

[2] RFC 5716 http://tools.ietf.org/html/rfc5716

[3] Gluster http://gluster.com

[4] Gluster on Wikipedia http://en.wikipedia.org/wiki/GlusterFS

[5] FedFS http://discolab.rutgers.edu/fs/

[6] Scalla/xrootd WAN globalization tools: Where we are Fabrizio Fu-

rano and Andrew Hanushevsky 2010 J. Phys.: Conf. Ser. 219 072005

http://iopscience.iop.org/1742-6596/219/7/072005/

[7] The xrootd.org homepage http://www.xrootd.org

[8] Furano F. Data Management in HEP: an approach. The European Physical

Journal Plus Volume 126, Number 1 (2011), 12, DOI: 10.1140/epjp/i2011-

11012-2

[9] Web enabled data management with DPM & LFC Alejandro Alvarez Ayllon,

Alexandre Beche, Fabrizio Furano, Martin Hellmich, Oliver Keeble and Ricardo

Brito Da Rocha CHEP2012

[10] DPM: Future Proof Storage Alejandro Alvarez, Alexandre Beche, Fabrizio

Furano, Martin Hellmich, Oliver Keeble, Ricardo Rocha CHEP2012

[11] DPM components https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Dev/Components

[12] ”This product includes GeoLite data created by MaxMind, available from

http://www.maxmind.com/.”

[13] Cristian Traian Cirstea Grid Data Access: Proxy Caches and User Views

Eindhoven University of Technology Stan Ackermans Institute / Software Tech-

nology ISBN 978-90-444-1067-9

[14] http://www.webdav.org/neon/

53

