OpenColorlO Documentation
Release 1.1.1

Sony Pictures Imageworks

July 10, 2020






CONTENTS

1 Mailing Lists 3
2 Quick Start 5
3 Downloading and Building the Code 7
3.1 Introduction . . . . . ... e e e e e e 7
3.1.1  Sony Pictures Imageworks Color Pipeline . . . . .. ... ... ... ... ......... 7

3.1.2  Further Information . . . . . . . . . . . e 9

3.2 Configurations . . . . . . v vt e e e e e e e e e e e e e e e e e 9
32.1 PublicConfigs . . . . . . . . . . e 10

322  Config Creation . . . . . . . o o v it e e e e e e e e e e e e 24

33 Installation . . . . .. L. e e 25
33,1 Theeasy Way . . . v v v v v i et e e e e e e e e e e e e e e e e e e e e 25

3.3.2  Building fromsource . . . . . . ... e e e e e e e e e 26

3.3.3  Quick environment configuration . . . . . ... ... 0oL oL 29

334 Nuke Configuration . . . . . . . . . . L e 29

3.3.,5 Environment variables . . . . .. ... oL 31

34 UserGuide . . . . . . oo e e e 32
341 ToolOVEIVIEW . . . . . o v it e e e e e e e 32

342 Baking LUT’S . . . . . o o o e e e e e e 34

343 COnteXtS . v v v v v i e e e e e e e e e e e e e e e e e e e e e e e e 40

344 LooKS . . . e e e 45

345 Config Syntax . . . . . .o e e e e e e e e e e e 47

3.5 Developer Guide . . . . . . . . e e e e e e e 60
3.5.1  Getting started . . .. L L L e e e e e e e e e e e e 60

352 Coding guidelines . . . . . . . . ... e 61

3.5.3 Documentation guidelines . . . . . . ... ..o oL 63

354  Submitting Changes . . . . . . . . L. e e e e e 64

355 ISSUES . o v o it e e e 66

3.5.6  Usage Examples . . . . . . o o . o e e e e e 66

357  CH+APL .« e 71

358  CH+Transforms . . . . . . . o o o e e e e e e e e 84

359  CHHTYpes . .o o v e 90
35.10 Python APL . . . . . . e 93
3.5.11 Python Transforms . . . . . . . . . . . e e e e e e e e 95
3.5.12 Python Types . . . . . o o o e e e e e e e e e 96
3.5.13 Internal Architecture OVerview . . . . . . . . . . . . o e e e e e 96

3.6  Compatible Software . . . . . . . . . .. e e 100
3.6.1  AfterEffects . . . . . . . e 100

3.6.2 Blender . . . ... 100

363  Krita. . . .. e e 100




3.6.5 Nuke . . . . e 101
366 Mari . . ... e e e 101
3,67  Katana . . . . . .. L e e e e e e e e 101
3.6.8  Hiero . . . . . . . . . e e 101
3.6.9  Photoshop . . . . . . . L e e 102
3.6.10 OpenlmagelO . . . . . . . . e e e e e e e e 102
3.6.11  CH4 o o e e 102
3.6.12 Python . . . . . . .. 102
3.6.13 VegasPro . . . . . .. e 102
3.6.14 Appsw/iccorluts . . . . . oL 102
3.6.15 RV . o o e 103
3.6.16 Java(Beta) . . . . . . . e e e e e 103
3.6.17 Gaffer . . . . . . . . e 104
3.6.18 Natron . . . . . . o o e e e e e e e e e 104
3.6.19 CryEngine3 (Beta) . . . . . . . . . . . e 104
37 FAQ . . o o 104
37.10 LACENSE? . o . o o i e e e e e e e e e e 104
372 Terminology . . . . . o i e e e e e e e e e e e e 104
3.7.3  What LUT Formats are supported? . . . . . . . . .. ... ... ... 105

3.7.4  Can you query a color space by name (like “Rec709”) and get back XYZ coordinates of its
primaries and whitepoint? . . . . . . . . ..o e e 105
3.7.5 Can you convert XYZ <-> named color space RGB values? . . . . ... ... ........ 105
3.7.6  What are the differences between Nuke’s Vectorfield and OCIOFileTransform? . . . . . .. 106
3.7.77  What do ColorSpace::setAllocation() and ColorSpace::setAllocationVars() do? . . ... .. 106
3.8 Downloads . . . . . oL e e e e e e 106
3.8.1  Contributor License AGreements . . . . . . . . . o v v ittt e e e e 106
3.8.2  Deprecated Downloads . . . . . . . . . ... e e e e 107
3.9 Changelog . . . . . o o e e e e e e e 107
300 License . . . . . o e e e e e e e 115




OpenColorlO Documentation, Release 1.1.1

OpenColorIO (OCIO) is a complete color management solution geared towards motion picture production with an
emphasis on visual effects and computer animation. OCIO provides a straightforward and consistent user experience
across all supporting applications while allowing for sophisticated back-end configuration options suitable for high-end
production usage. OCIO is compatible with the Academy Color Encoding Specification (ACES) and is LUT-format
agnostic, supporting many popular formats.

OpenColorlO is released as version 1.0 and has been in development since 2003. OCIO represents the culmination of
years of production experience earned on such films as SpiderMan 2 (2004), Surf’s Up (2007), Cloudy with a Chance
of Meatballs (2009), Alice in Wonderland (2010), and many more. OpenColorlO is natively supported in commercial
applications like Katana, Mari, Nuke, Silhouette FX, and others.

CONTENTS 1



OpenColorlO Documentation, Release 1.1.1

2 CONTENTS



CHAPTER
ONE

MAILING LISTS

There are two mailing lists associated with OpenColorlO:

ocio-user@lists.aswf.io For end users (artists, often) interested in OCIO profile design, facility color manage-
ment, and workflow.

ocio-dev@lists.aswf.io For developers interested OCIO APIs, code integration, compilation, etc.



https://lists.aswf.io/g/ocio-user
https://lists.aswf.io/g/ocio-dev

OpenColorlO Documentation, Release 1.1.1

4 Chapter 1. Mailing Lists



CHAPTER
TWO

QUICK START

Most users will likely want to use the OpenColorlO that comes precompiled with their applications. See the Compat-
ible Software for further details on each application.

Note that OCIO configurations are required to do any ‘real’ work, and are available separately on the Downloads
section of this site. Example images are also available. For assistance customizing .ocio configurations, contact
ocio-user.

» Step 1: set the OCIO environment-variable to /path/to/your/profile.ocio
 Step 2: Launch supported application.

If you are on a platform that is not envvar friendly, most applications also provide a menu option to select a different
OCIO configuration after launch.

Please be sure to select a profile that matches your color workflow (VFX work typically requires a different profile
than animated features). If you need assistance picking a profile, email ocio-user.



https://lists.aswf.io/g/ocio-user
https://lists.aswf.io/g/ocio-user

OpenColorlO Documentation, Release 1.1.1

6 Chapter 2. Quick Start



CHAPTER
THREE

DOWNLOADING AND BUILDING THE CODE

Source code is available on Github at http://github.com/imageworks/OpenColorlO
Download a .zip or .tar.gz of the current state of the repository.

Please see the Developer Guide for more info, and contact ocio-dev with any questions.

3.1 Introduction

OpenColorIO (OCIO) is a complete color management solution geared towards motion picture production with an
emphasis on visual effects and computer animation. As such, OCIO helps enforce a color management methodology
that is required for the high fidelity color imaging in modern computer graphics. This section introduces those concepts
and general workflow practices. Additional information can be found in Jeremy Selan’s Cinematic Color document.

While OCIO is a color management library, it’s only knowledge of color science comes from it’s execution of the
transforms defined in the OCIO configuration file. These transforms are either defined by the end user in a custom
OCIO config or inherited from the publicly available configs.

By specifying your desired config.ocio Config file in the local environment all OCIO compatible applications and
software libraries will be able to see your defined color transform “universe”, and direct the transformation of image
data from one defined OCIO.ColorSpace to another, in addition to the other transforms documented elsewhere.

3.1.1 Sony Pictures Imageworks Color Pipeline

This document describes a high-level overview on how to emulate the current color management practice at Sony
Imageworks. It applies equally to all profiles used at Imageworks, including both the VFX and Animation profiles. It’s
by no means a requirement to follow this workflow at your own facility, this is merely a guideline on how we choose
to work.

General Pipeline Observations

* All images, on disk, contain colorspace information as a substring within the filename. This is obeyed by all
applications that load image, write images, or view images. File extensions and metadata are ignored with
regards to color processing.

Example:

colorimage_lnf.exr : 1Inf
dataimage_ncf.exr : ncf
plate_1gl0.dpx : 1gl0
texture_dt8.tif : dt8



http://github.com/imageworks/OpenColorIO
http://github.com/imageworks/OpenColorIO/zipball/master
http://github.com/imageworks/OpenColorIO/tarball/master
https://lists.aswf.io/g/ocio-dev
http://cinematiccolor.org/

OpenColorlO Documentation, Release 1.1.1

Note:

File format extension does NOT imply a color space. Not all .dpx files are 1g10. Not all .tif images are dt8.

The common file formats we use are exr, tif, dpx.

render outputs: exr

render inputs (mipmapped-textures): exr, tif (txtif)

photographic plates (scans): dpx

composite outputs: dpx, exr

on-set reference: (camera raw) NEF, CR2, etc.

painted textures: psd, tif

output proxies: jpg

All pipelines that need to be colorspace aware rely on Config.parseColorSpaceFromString.

Color configurations are show specific. The $OCIO environment variable is set as part of a ‘setshot’ process,
before other applications are launched. Artists are not allowed to work across different shows without using a
fresh shell + setshot.

While the list of colorspaces can be show specific, care is taken to maintain similar naming to the greatest extent
feasible. This reduces artist confusion. Even if two color spaces are not identical across shows, if they serve a
similar purpose they are named the same.

Example: We label 10-bit scanned film negatives as 1g10. Even if two different shows use different acquisition
film stocks, and rely on different linearization curves, they are both labeled 1g10.

There is no explicit guarantee that image assets copied across shows will be transferable in a color-correct
manner. For example, in the above film scan example, one would not expect that the linearized versions of scans
processed on different shows to match. In practice, this is not a problematic issue as the colorspaces which are
convenient to copy (such as texture assets) happen to be similarly defined across show profiles.

Rendering

Rendering and shading occurs in a scene-linear floating point space, typically named “In”. Half-float (16-bit)
images are labeled Inh, full float images (32-bit) are labeled Inf.

All image inputs should be converted to In prior to render-time. Typically, this is done when textures are
published. (See below)

Renderer outputs are always floating-point. Color outputs are typically stored as Inh (16-bit half float).

Data outputs (normals, depth data, etc) are stored as ncf (“not color” data, 32-bit full float). Lossy compression
is never utilized.

Render outputs are always viewed with an OCIO compatible image viewer. Thus, for typical color imagery the
Inf display transform will be applied. In Nuke, this can be emulated using the OCIODisplay node. A standalone
image viewer, ociodisplay, is also included with OpenColorlO src/example.

Texture Painting / Matte Painting

Textures are painted either in a non-OCIO color-managed environment (Photoshop, etc), or a color managed
one like Mari.

Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

* At texture publish time, before mipmaps are generated, all color processing is applied. Internally at SPI we use
OpenlmagelO’s maketx that also links to OpenColorlO. This code is available on the public OIIO repository.
Color processing (linearization) is applied before mipmap generation in order to assure energy preservation in
the render. If the opposite processing order were used, (mipmap in the original space, color convert in the
shader), the apparent intensity of texture values would change as the object approached or receded from the
camera.

* The original texture filenames contain the colorspace information as a substring, to signify processing intent.

 Textures that contain data (bump maps, opacity maps, blend maps, etc) are labeled with the nc colorspaces
according to their bitdepth.

» Example: an 8-bit opacity map -> skin_opacity_nc8.tif

* Painted textures that are intended to modulate diffuse color components are labelled dt (standing for “diffuse
texture”). The dt8 colorspace is designed such that, when linearized, values will not extend above 1.0. At
texture publishing time these are converted to Inh mipmapped tiffs/exr. Note that as linear textures have greater
allocation requirements, a bit depth promotion is required in this case. L.e., even if the original texture as painted
was only 8-bits, the mipmapped texture will be stored as a 16-bit float image.

* Painted environment maps, which may be emissive as labeled vd (standing for ‘video’). These values, when
linearized, have the potential to generate specular information well above 1.0. Note that in the current vd
linearization curves, the top code values may be very “sensitive”. l.e., very small changes in the initial code
value (such as 254->255) may actually result in very large differences in the estimated scene-linear intensity.
All environment maps are store as Inh mipmapped tiffs/exr. The same bit-depth promotion as in the dt8 case is
required here.

Compositing

* The majority of compositing operations happen in scene-linear, Inf, colorspace.

» All image inputs are linearized to Inf as they are loaded. Customized input nodes make this processing conve-
nient. Rendered elements, which are stored in linear already, do not require processing. Photographic plates
will typically be linearized according to their source type, (Ig10 for film scans, gn10 for genesis sources, etc).

e All output images are de-linearized from Inf when they are written. A customized output node makes this
convenient.

* On occasion log data is required for certain processing operations. (Plate resizing, pulling keys, degrain, etc).
For each show, a colorspace is specified as appropriate for this operation. The artist does not have to keep
track of which colorspace is appropriate to use; the OCIOLogConvert node is always intended for this purpose.
(Within the OCIO profile, this is specified using the ‘compositing_log’ role).

3.1.2 Further Information

Specific information with regard to the public OCIO configs can be found in the Configurations section.

3.2 Configurations

This section gives an overview of what existing (public) OCIO configurations exist, and how to create new ones.
OCIO Configurations can be downloaded here: .zip .tar.gz (OCIO v1.0+)

If you are interested in crafting custom color configurations, and need assistance, please contact: ocio-user.

3.2. Configurations 9


http://github.com/imageworks/OpenColorIO-Configs/zipball/master
http://github.com/imageworks/OpenColorIO-Configs/tarball/master
https://lists.aswf.io/g/ocio-user

OpenColorlO Documentation, Release 1.1.1

3.2.1 Public Configs
spi-vix

This is a real OCIO color profile in use at Sony Pictures Imageworks, and is suitable for use on visual effects (VFX)
work. The concepts utilized in this profile have been successfully validated on a variety of Imageworks visual effects
films, including Spider-Man, Alice In Wonderland, G-Force, and Green Lantern.

Conversion from film to/from scene-linear is a simple, trivially invertible 1D transform. The display transforms
are complex, 3D film-print emulations.

In production, this profile is typically used before final color details are worked out. Although it sounds temporary,
most of a film can be made off this configuration. Final color decisions for a film are often made long after significant
work has been done. In some cases shots from a film can be finaled before the color details, such as which Digital
Intermediate (DI) house will be used, are decided. Entire projects have been completed using this profile without
modification.

This profile embodies two philosophies of color management familiar to those in production: “Keep It Simple”, and,
“Don’t Be Evil”.

The following steps outline a simplified visual effects color workflow:
* Load a plate (log film scan, digital motion picture camera, etc)
» Convert device color space to scene-linear
* Render and composite in scene-linear
* Convert from scene-linear to device color space
e Qutput final plate

It is absolutely critical to guarantee that process - end to end - is colorimetrically a no-op. Under no circumstances are
any unintended modifications to the original image allowed.

Thus, this profile uses very simple (1D) conversions for all input and output color space conversions. All of the
complexity (the 3D LUT film emulation lifting) is handled at display time, and is never baked (or unbaked) into the
imagery. For visualization, this profile includes a generic Kodak Vision print emulation suitable for display on a
reference SRGB monitor or a P3 Digital Cinema projector.

Caveot 1: Of course, we realize that there are many other color workflows that may be equally good (or better) than
the one presented here. Please, if you have a successful alternative workflows share the details!

Caveot 2: We are not distributing the code that generates the luts from their underlying curve representations. While
we hope to publish this eventually, at the current time this process relies on internal tools and we don’t have the spare
development cycles to port this code to something suitable for distribution.

Invertibility

Elements often need to be transferred back and forth many times between different colorspaces. Since it’s impossible
to know in advance how many times an image may be transferred between colorspaces it is essential for the majority
of transformations to be lossless invertible transformations. By the end of the color pipeline even a 1 value difference
in a 10bit transformation can become a significant issue. Invertible transformations can be taken from the source
space, to linear and back with no change to the data. A higher value is placed on transformations being predictable
and invertible than absolutely correct. All 1-d luts allow for forward and inverse transformations with no loss. Unless
specified all channels are equally affected. The luts are 1 bit wider than stated, so Ig8 actually defines 9 bits worth of
entries. This allows the rounding in the inverse direction to be applied unambiguously (lossless).

Non-invertible transforms contain 3d lookups. 3D transformations can not be inverted due to gamut mapping issues.
Non-invertible transformations are only used for final output media (such as QuickTimes) and for display purposes.

10 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Film Emulation Inversion

Inverse film emulation luts aren’t supported in a default configuration. Imageworks does not use a film emulation
inversion lut for texture or matte paintings. In its place a film emulation preview lut, commonly as an ICC profile, is
used. Although most film emulation luts are similar they do differ significantly. The DI facility creating final color is
often chosen long after significant vfx work has been begun. The film luts the film will be finished on are not made
until weeks, or days, before DI begins. So the ‘true’ lut that will be used for the finishing is not available until very
late in the production, from a VFX perspective. There are many color gamut mapping issues that arise when inverting
film to video lut. Using a film inversion lut at this stage would bake in a look that isn’t quite right and is very difficult
to fully un-bake. It is safer to work with images in a non-constrained way and apply a visualization that can be toggled
on and off.

Scene Linear Inf, Inh, In16
Middle Gray: 0.18

The linear space is a photometrically linear space, representing high-dynamic range (HDR) pixel values in our virtual
world. Middle gray is defined to be at 0.18. While the dynamic range of Inf is technically unbounded, pixel values for
natural, well exposed imagery will often fall between +/- 8 stops from gray.

The scene linear colorspace is used for compositing, rendering, and is also the profile connection space. All colorspace
conversions are made in relation how they transform into or out of scene linear.

The colors defined in linear are implicitly bounded by film negative sensitivities. The space is based off an OCN film
scan where values refer to linear light at the focal plane. 0.18 in linear will correspond to a %18 percent grey card
captured on filmplane under the same lighting conditions where diffuse white is 1.0. Values above 1.0 in any channel
would indicate a ‘specular’, or light emitting objects.

Inf is a full precision (32-bit) floating point colorspace. It is used for rendering and compositing.
Inh is a half precision (16-bit) floating point colorspace. It is used for rendering and compositing.

In16 is a 16 bit integer representation of the [0,1] range of Inf. This is no longer used but is kept if a legacy image
needs to be loaded, or if linear images need to be loaded into an application that does not support float. Note that
storing a float Inf image using an integer In16 representation is destructive, and throws away data.

Film Log 1g8, 1210, Ig16, lgf
Middle Gray: 445 (of 1023)

The log to linear curve is based on an analysis of several commonly used Kodak acquisition stocks. It was found that
Kodak 5218 is right about in the middle in terms of tone response given the input imagery we receive. The curve incor-
porates some toe compensation. The curve gamma closely matches 5218. The transformation does not represent any
single stock. The Imageworks log conversions are not channel specific, all color channels are transformed uniformly.
Compositing productivity gains have been found using the toe compensations when compared to using a straight line
log to linear curve. Shoulder compensation - while technically correct - detracted from compositing quality, often
creating situations where grain film noise would result in larger than desired changes in linear light.

1g8, 1g10, and Igl16 are similar. They are all the same log to linear transformation but are explicitly defined to be
lossless at the specified bit depths. The luts use nearest neighbor interpolation to search for an exact match. Significant
performance gains were found when using the proper bitdepth lut. While using the Ig16 conversion on an 8 bit image
will yield the same result, it is measurably slower than using the 8-bit conversion (assuming 8-bits is all that is needed).
This performance gap remains even on current graphics hardware.

Ig spaces specify 21 of stops of dynamic range. 0 in 1g10 space is 15 stops below diffuse white. 445 correspond to
18% grey and is ~2.47 below diffuse white. 1023 in Ig10 space is 6 stops above diffuse white.

3.2. Configurations 11



OpenColorlO Documentation, Release 1.1.1

| Eile Edit Curve Segment Keyframe Help |
ij_EEIE_green | BLE

S218_green_invers
O current_lg

O cwrrent_lg_inverse
Ot

E] lg_inverse

O lg.v3

O lg_vi_inverse

O lof

[ lgl_inverse

O Inzhsc_te_lg

O Inzhse_to_lg_invers

Expression [lE X0 [t -

Figure 3.1: 1g10 to linear light. The green curve represents the lg to In conversion. The red curve show the green
channel of a Kodak 5218 exposure test. The x-axis is in 10bit input lg the output is in lg base2 linear light units. 0.0
Represents diffuse white.

Igf is identical on the range from 0-1 to the standard 1g luts. It specifies an additional range below 0.0 and above 1.0.
In 10 bit the spaces is defined from -512 to 2048. Lg color timing number from either on set color correction devices
or from a DI house to be applied in a way that can be fully inverted out without loss. Lgf specifies 18 stops above the
Ig10 max and 36 stops below the log10 min with a total dynamic range of 85 stops. The space is designed to be bigger
than needed.

Panalog (Genesis) gn8, gn10, gn16, gnf

GN is the Imageworks Panalog space. It follows the Panalog specification and additionally extrapolates so all of the
values from 0 to 1023 are defined. This was necessary due to compression artifacts that could create values below the
Panalog specifications. gn8,10,16 are defined with diffuse white at 681, Max white is approximately 2.6 stops above
diffuse white and black is approximately 12.6 stops below diffuse white. The dynamic range is less than that of 1g.

gnf is similar in purpose and function to Igf. It is identical on the range from 0-1 to the regular gn and specifies an
additional range below 0.0 and above 1.0. In 10 bit numbers gnf is defined from -255 to 3125. This allows for color
timing number from either on set color correction devices or from a DI house to be applied in a way that can be fully
inverted. Additionally it allows for 1g10 based image data to be fully represented without clipping.

gnf specifies 14.5 stops above the gn10 max and 18 of stops below the gn10 min. The entire range of gnf is 47 stops.

Reference Art vd$8, vd16, vdf, hd10

The vd spaces are mappings of linear image data into display space. The main part of the transformation is defined as
a single curve that is conceptually two parts. The first is a In to 1g conversion. The second is 1g to sSRGB conversion.
This is based off the neutral channel response of the SRGB film emulation lut used in the profile. The dynamic range
of the vd colorspace is limited. It is undesirable to map the vd max to the linear max. Such a conversion results in
linear values are almost never what an artist intended. The rule of thumb is that, at the high end, single value deltas
in an 8 bit image should never create over a half stop of additional linear light. The vd conversion curve is limited to
prevent this case.

12 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Ll

File Edit Curve Segment Keyframe Help
[ 5218_green |
S218_green_invers
O current_lg
O current_lg_inverse
Ot
O lg_inverse
O 193
O lg_vi_inverse
0 lof
Fl lgl_invarse
O Inzhsc_to_lg
O Inzhsc_to_lg_invers

Expression vl X|s12 bel 51 | Newkey |

Figure 3.2: 1gf to linear light. The green curve represents the Ig to In conversion. The red curve show the green channel
of a Kodak 5218 exposure test. The x axis is in 10bit input Ig the output is in log(base2) linear light units. O Represents
diffuse white

-

file Edi Curve Segment Keyirame Help

7| (=] gn_.flt
O an_fit_inverse

F raw

O raw_imverse

— ] i

Figure 3.3: gnl0 to linear light. the x axis is in 10bit Panalog values. The Y axis is in linear light. The green curve is
the gn curve. the red curve is the Panalog data.

3.2. Configurations 13



OpenColorlO Documentation, Release 1.1.1

Eile Edit Curve Segment Keyframe Help
2 T
O gn_fit_inverse

E] raw

O raw_inverse

Expression vl X264 Il 310475

Figure 3.4: gnf to linear light. the x axis is in 10bit Panalog values. The Y axis is in linear light. The green curve is
the gn curve. the red curve is the Panalog data. Only a subset of the function is used to define the gnf solorspace

&

File Edit Curve Segment Keyframe Help
[ & D-.Msr.ﬂucal.'sulﬂlb:‘sn|_

0 fut
Fl tone_ocio_vd_twea
O tone_w4

Expressien x| ¥ |

Figure 3.5: The curve used to map from Lg8 to vd 8. The x-axis is in 1g8 units, the y-axis is in vd8 units.

14 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

The dynamic range of the vd is limited to around 2.5 stops above diffuse white. This has two positive attributes. It
allows vd to be used to directly on matte paintings. It also allows all of vd to be represented in a gn10 image. The last
part of the transformation is a matrix transformation that moves the whitepoint of film to look correct when displayed
with a d65 whitepoint.

The main use of this colorspace is to import RGB images with an unknown colorspace. This colorspace no longer gets
much use alone; However it is an integral part of many conversions. It is also part of the matte painting and diffuse
texture pipelines.

vdf works differently than the other floating spaces. It still only defines the color transformation from 0-1. This
colorspace is used when we receive video space encoded exr’s.

HD10 is a vd based space that is used for importing and exporting REC709 range broadcast material. This works
very well for broadcast camera native material and poorly for material with a film emulation lut baked in. This
transformation works well exporting film based material to tape, even though it lacks a film emulation lut. It does not
give an accurate color rendering but created a pleasing image that makes clients happy.

Structurally the conversion is a matrix operation that scales the data then adds an offset to limit the range from 64-940.
From there the standard vd transformation is applied.

Texture Painting dt8, dt16

DT 8,16 - Diffuse texture colorspaces. These colorspaces are used for the conversion of textures painted in video space
into a range limited linear space for use in rendering. The Color space is based on the vd transformation but limits the
conversion into linear space so that no values above diffuse white can be created. This ensures that textures do not add
light to a render. This is achieved by using a matrix transformation to limit the mapping of vd to the linear value of
diffuse white.

Data nc8, ncl0, nc16, ncf

Non-Color (NC) spaces are used to hold any data that needs to be processed though the color pipeline unaltered. These
are data spaces and can hold anything such as point clouds, normals, untagged reference art, etc. These data spaces do
not get transformations applied at any point.

Display Transforms srgb8, p3dci8, xyz16

srgb8 bakes in the film3d emulation lut. This table can be used for either QuickTime generation or output to the sSRGB
display. The transformation is a 3d film emulation table with gray balance compensation, so a value of 445,445,445 in
1g10 space os modified to become equal RGB values in SRGB. Additionally the lut is scaled so that at least one of the
color channels on maximum white uses the display max.

The transformation takes place in three parts. First the linear data is converted to the show log space. Then a film
emulation table is applied. Then the grey balance and white scaling compensation are applied. This table is designed
to be evaluated in a dimly lit office environment on a SRGB display.

p3dci8 is an implementation of film emulation table that has an output of DCI P3. This is only ever used for driving
DLPs for display. The transformation has two parts. First the linear image data is converted to Ig10 based image data
then the DCI P3 film emulation lut is applied. No additional compensations are made.

xyz16 is designed for the creation of a Digital Cinema Distribution Master (DCDM). The color matches that of the
P3 output (dlpqt8), but has an additional output transformation to convert to X’Y’Z’. The transformation takes the
linear image data and converts it to lg, then applies the filmlook. The data is then in DCI P3 colorspace. That data
is converted to display linear P3, using an inverse gamma curve. A matrix conversion is then used to transform from
DCI P3’ into XYZ’. The final step is to reapply the gamma 2.6 to result in XYZ16 values.

In this profile each display has three identical looks defined. The names are kept consistent between devices to
minimize confusion. OCIO uses a specific tag to associate colorspaces with displays. The tags are nothing more than
links to already defined colorspaces.

3.2. Configurations 15



OpenColorlO Documentation, Release 1.1.1

Film is the image displayed though a film emulation lut. This visualization is display compensated and should visually
match between a SRGB display and a P3 projector. The goal is to match how the film will look in a DI. The luts in use
for this profile roughly match the Sony ColorWorks environment.

Raw visualization shows the image data on the screen with no display compensation. This is used for image debugging
purposes, for instance to see if potential image discontinuities are in the source data or the visualization.

Log visualization displays the image as if it were converted to the show specific log. This is transformation also has
no display compensation. The common use for this us to see how well elements fit into the comp without the film
emulation lut disguising any flaws. Old school compositors love it for grain matching.

sRGB Film : srgb8 sRGB Raw : nc10 sRGB Log : 1g10
DCIP3 Raw : nc10 DCIP3 Log : 1g10 DCIP3 Film : dlpqt8

Display Calibration sRGB is the supported desktop display specification, calibrated to the sSRGB standard and
viewed in a dim office environment. As Imageworks switched from crt based display devices to LCD based devices
a number of possible colorspaces were explored. It was a long decision but sSRGB was chosen for a few reasons. An
important one was that almost every display manufacturer can implement sSRGB, reasonable well. This becomes a
boon when we work needs to be done outside of our main facilities. Even a consumer display with calibration can
come close to matching the SRGB standard. Since so many monitor manufacturers can hit SRGB calibration we are
not tied to purchasing from a specific vendor. It becomes unnecessary to specify a specific display to with productions
or external vendors. It also reduces the amount of studio specific color requirements that need to be communicated
when working with other facilities. 80 cd/m”2, D65 white point, srgb gamma function (approx 2.4)

P3 was deemed especially unusable on the desktop. The full specification requires a white point of 48 cd/m”2. To
adapt P3 for desktop use (in dim ambient environments), the whitepoint luminance needed to be raised. The specified
2.6 gamma is very challenging to the current display technology on very dark colors. This meant that we would
have a special Imageworks video P3. A custom colorspace wouldn’t make compositing better and would require a
conversation, or conversion, every time video was sent out of house.

DCIP3 is a projector calibrated to DCI P3 mastering specification in a theatrical mastering environment. We use a
mix of display technologies, SXRD and DLP, depending on application. Gamma 2.6. Traditional DCI calibration.

spi-anim

This is a real OCIO color profile in use at Sony Pictures Imageworks, and is suitable for use on animated features.
The concepts utilized in this profile have been successfully validated on a variety of Sony Pictures Animation features
including Cloudy With A Chance Of Meatballs, Surf’s Up, and Arthur Christmas.

nuke-default

This profile corresponds to the default Nuke color configuration (currently generated from Nuke 6.1).

If you have made modifications to a nuke color configuration, and wish to re-export your own custom OCIO profile,
please refer to the nuke_to_ocio utility script distributed with OpenColorIO.

The following color transforms are defined:
* linear
* sSRGB
e rec709
* Cineon

e Gamma 1.8

16 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

e Gamma 2.2
 Panalog

* REDLog

* ViperLog
* REDSpace

aces_1.0.3

ACES 1.0.3 OpenColorlO configuration

Information about ACES

The ACES project home page is here:
* http://www.oscars.org/aces
The latest documentation on the ACES transforms and specifications can be found here:

* http://www.oscars.org/science-technology/aces/aces-documentation

Colorspaces

Colorspaces in this configurations are grouped into the following families: ACES, ADX, Look, Output, Input, Utility,
Aliases. Descriptions for the colorspaces in the different families are provided below.

For ease of use across a broader number of applications, the family name of each colorspace is pre-pended to the
colorspace name when the configuration is authored. Those prefixes will be omitted in this document, but will show
up when the configuration is loaded and used.

ACES Colorspaces
* ACES2065-1
* ACEScc
* ACEScct
* ACESproxy
* ACEScg
Description
Colorspaces and transforms representing the core ACES working and interchange colorspaces.
Technical information

Transforms generated based on the ACES CTL Transforms

Output Colorspaces
* sSRGB
¢ sSRGB (D60 sim.)
* Rec.709

3.2. Configurations 17


http://www.oscars.org/aces
http://www.oscars.org/science-technology/aces/aces-documentation
https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl

OpenColorlO Documentation, Release 1.1.1

¢ Rec.709 (D60 sim.)
* Rec.2020
e Rec.2020 ST2048 (1000 nits)
e DCDM (P3 gamut clip)
« DCDM
* P3-D60 ST2048 (1000 nits)
* P3-D60 ST2048 (2000 nits)
* P3-D60 ST2048 (4000 nits)
* P3-D60
* P3-DCI

Description

Colorspaces and transforms implementing the ACES Output Transforms. These colorspaces produce code values
ready for display on hardware devices calibrated to the standard used to name the colorspace.

Technical information
 Transforms generated based on the ACES CTL Transforms

 All transforms produce full-range output. Host applications should be used to apply an full-to-legal scaling
needed.

Input Colorspaces There are a variety of Input Transforms covering different cameras manufacturers, gamuts, trans-
fer functions and camera settings. See below for specifics.

Description

Colorspaces and transforms that implement the ACES Input Transforms. These colorspaces are used to convert from
camera-specific formats and encodings to ACES.

Technical information

References and descriptions are provided for each group of Input Transforms below. - The colorspaces whose names
include a transfer function and a gamut name are full implementations of ACES Input Transforms.

* Ex. The ARRI ‘V3 LogC (EI160) - Wide Gamut’ colorspace
e Ex. The RED ‘REDIlogFilm - DRAGONCcolor2’ colorspace
* Ex. The Canon ‘Canon-Log - DCI-P3 Daylight’ colorspace

* The colorspaces that start with ‘Linear - * will convert to or from a specific gamut but not apply a transfer
function.

* The colorspaces that start with ‘Curve - * will apply a transfer function but not convert between gamuts.

ADX Colorspaces
* ADXI10
* ADX16
Description
Colorspaces and transforms representing the ACES ADX spaces used for film scanning and printing.

Technical information

18 Chapter 3. Downloading and Building the Code


https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl

OpenColorlO Documentation, Release 1.1.1

 Transforms generated based on the ACES CTL Transforms

* Alex Fry’s ACES 0.7.1 OCIO config was also a valuable resource.

ARRI
* ARRI ‘Working with ACES’
* ARRI Input Transforms

* Conversations with Joseph Goldstone of ARRI

Canon
e Canon ACES landing page
* Clog white paper
e C700 Drivers and Software
* C500 Drivers and Software

C300 Drivers and Software
— Choose OSX Mountain Lion v10.8 to download the IDTs
C300 Mark II Drivers and Software

— Choose OSX Mountain Lion v10.8 to download the IDTs, labeled “EOS C300 Mark II Input Transform
Version 2.0 (for Cinema Gamut / BT.2020)”

¢ C100 Drivers and Software

— Choose OSX Mountain Lion v10.8 to download the IDT's

Panasonic
* Vlog/V-Gamut white paper

¢ Varicam Drivers and Software

RED
¢ Understanding REDlogFilm and REDgamma

¢ Conversations with Graeme Nattress of RED

Sony

* Sony Input Transforms

GoPro (Experimental)
* The quality and consistency of these transforms has not been verified.

¢ Conversations with David Newman of GoPro

3.2. Configurations 19


https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl
https://github.com/imageworks/OpenColorIO-Configs/tree/master/aces_0.7.1
http://www.arri.com/camera/alexa_mini/learn/working_with_aces/
https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl/idt/vendorSupplied/arri/alexa
http://usa.canon.com/cusa/professional/standard_display/aces
http://learn.usa.canon.com/app/pdfs/white_papers/White_Paper_Clog_optoelectronic.pdf
https://www.usa.canon.com/internet/portal/us/home/support/details/cameras/cinema-eos/eos-c300-mark-ii?tab=drivers#Z7_MQH8HIC0L88RB0AMD0F1Q42K25
http://www.usa.canon.com/cusa/professional/products/professional_cameras/cinema_eos_cameras/eos_c500#DriversAndSoftware
http://www.usa.canon.com/cusa/professional/products/professional_cameras/cinema_eos_cameras/eos_c300#DriversAndSoftware
https://www.usa.canon.com/internet/portal/us/home/support/details/cameras/cinema-eos/eos-c300-mark-ii
http://www.usa.canon.com/cusa/professional/products/professional_cameras/cinema_eos_cameras/eos_c100#DriversAndSoftware
http://pro-av.panasonic.net/en/varicam/common/pdf/VARICAM_V-Log_V-Gamut.pdf
http://pro-av.panasonic.net/en/varicam/35/dl.html
http://www.red.com/learn/red-101/redlogfilm-redgamma
https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl/idt/vendorSupplied/sony

OpenColorlO Documentation, Release 1.1.1

Utility Description
A collection of colorspaces that are used to facilitate the creation of LUTs and other basic functionality.
Technical information

* The ‘Log2 xx nits Shaper’ and ‘Dolby PQ xx nits Shaper’ spaces cover the linear range centered around 18%
grey. The 48 nits spaces cover -6.5 stops (0.0028125) to +6.5 stops(16.291740). The 1000 nits spaces cover -12
stops to +10 stops. The 2000 nits spaces cover -12 stops to +11 stops. The 4000 nits spaces cover -12 stops to
+12 stops.

e The LMT shaper spaces cover the linear range going from 10 stops below 18% grey (0.00017578125) to 6.5
stops above 18% grey (16.291740)

* The colorspaces starting with ‘Linear - * will convert to or from a specific gamut but not apply a transfer function.

» The colorspaces starting with ‘Curve - ¢ will apply a transfer function but not convert between gamuts.

Look Colorspaces
* ACES 1.0 to 0.1 emulation
* ACES 1.0 to 0.2 emulation
* ACES 1.0 to 0.7 emulation
Description
Colorspaces and transforms emulating the look of the ACES 0.1, 0.2 and 0.7 release.
 Should be applied to data in the ACES2065-1 colorspace.
 Should be used before an ACES Output Transform.
Technical information

Transforms generated based on the ACES CTL Transforms

Roles

Description

The role colorspaces are aliases to the colorspaces used for the OCIO ‘roles’ functionality.
Aliases

Description

The alias colorspaces are named with all lower-case letters and no spaces, dashes, parentheses or other characters that
would not work well in a filename. They are only references, aliases for the base colorspaces with more user-friendly
names. These spaces were added to enable OCIO’s token-based colorspace / filename matching.

* These colorspaces should not generally be used by most artists.

Roles The standard OCIO roles are defined. They role assignments are:
* color_picking: Output - Rec.709
¢ color_timing: ACEScc
* compositing_log: ADX10

¢ data: Raw

20 Chapter 3. Downloading and Building the Code


https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl

OpenColorlO Documentation, Release 1.1.1

default: ACES2065-1

* matte_paint: ACEScc
¢ reference: Raw

* scene_linear: ACEScg
e texture_paint: Raw

Additionally, a number of colorspaces that are gaining wider adoption have been added to the config. Their names and
assignment are:

* compositing_linear:: ACEScg
* rendering:: ACEScg

Displays and Views

The default config has one Display named ACES, which contains the following Views / colorspaces:
* sRGB, colorspace: sSRGB
* sRGB D60 sim., colorspace: SRGB (D60 sim.)
* DCDM, colorspace: DCDM
* DCDM P3 gamut clip, colorspace: DCDM (P3 gamut clip)
* P3-D60, colorspace: P3-D60
* P3-D60 PQ 1000 nits, colorspace: P3-D60 PQ (1000 nits)
* P3-D60 PQ 2000 nits, colorspace: P3-D60 PQ (2000 nits)
* P3-D60 PQ 4000 nits, colorspace: P3-D60 PQ (4000 nits)
* P3-DCI, colorspace: P3-DCI
¢ Rec.2020, colorspace: Rec.2020
e Rec.2020 ST2048 1000 nits, colorspace: Rec.2020 ST2048 (1000 nits)
* Rec.709, colorspace: Rec.709
* Rec.709 D60 sim., colorspace: Rec.709 (D60 sim.)
* Raw, colorspace: Raw
* Log, colorspace: ACEScc
Considerations for custom config generation:

* The choice of a single Display and many Views may not align well with the implementation of OCIO in an application.

— If you would like to generate a config that contains multiple Displays, with a small number of Views
for each, review the config generation script’s ‘—createMultipleDisplays’ option.

* If a Look is added to the config, a new set of Views will be added, one for each of the Views listed above except Raw and L

— To add a custom Look to the config, review the config generation script’s ‘~addACESLookLUT’,
‘~addACESLookCDL’, ‘~addCustomLookLLUT’ and ‘~addCustomLookCDL’ options.

3.2. Configurations 21



OpenColorlO Documentation, Release 1.1.1

LUTs

The default resolution is 65x65x65 for the 3D LUTs and 4096 for the 1D LUTs.
OCIO LUTSs The LUTs used internally by OCIO can be can be retrieved from the repository here.
Baked LUTSs LUTs that can be used outside of OCIO are included in the ‘baked’ directory here.

¢ The LUTs encode the ACES Output Transform for a specific colorspace input and are generally named:

— ‘Ouput Transform name’ for ‘Input colorspace name’.extension
— Ex. ‘sRGB (D60 sim.) for ACEScc.icc’
The LUTs included in the ‘baked’ directory cover the following formats and applications:
¢ .3dl for Autodesk Flame
¢ .3dl for Autodesk Lustre
e .lut for SideFX Houdini
¢ .csp for Autodesk Maya
* .icc for Adobe Photoshop

Generating Configurations

Python Configurations can be generated by the following Python package: aces_1.0.3/python
Usage is described on the command line and in the package root __init__.py file.
Features exposed for customization by the user include:

* The resolution of 1D and 3D LUTs

* Inclusion of custom Looks

* Two modes of creating the list of OCIO Displays and Views

¢ Selection of shaper function: Log2 or Dolby PQ

CTL Source The configuration depends on the ACES 1.0.3 release. The release contains a number of file renames
and the new ACEScct color space and a number of minor bug fixes and small additions, but is otherwise very similar
as the master ACES 1.0.2 release.

The CTL is available here:
* https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl
Clone this repo using the following command:

* git clone —branch v1.0.3 https://github.com/ampas/aces-dev.git

Dependencies

The Python configuration generation package depends on the following libraries:
¢ OpenlmagelO: http://openimageio.org
— Detailed build instructions can be found here: OpenlmagelO Build Instructions

¢ OpenColorIO: http://opencolorio.org

22 Chapter 3. Downloading and Building the Code


https://github.com/hpd/OpenColorIO-Configs/tree/master/aces_1.0.3/luts
https://github.com/hpd/OpenColorIO-Configs/tree/master/aces_1.0.3/baked
https://github.com/hpd/OpenColorIO-Configs/tree/master/aces_1.0.3/python
https://github.com/hpd/OpenColorIO-Configs/blob/master/aces_1.0.3/python/aces_ocio/__init__.py
https://github.com/ampas/aces-dev/tree/v1.0.3/transforms/ctl
https://github.com/ampas/aces-dev.git
http://openimageio.org
https://sites.google.com/site/openimageio/checking-out-and-building-openimageio
http://opencolorio.org

OpenColorlO Documentation, Release 1.1.1

e CTL: https://github.com/ampas/CTL

— Detailed build instructions can be found here: OpenColorIO Build Instructions

Building on macOS - Use the following commands to build these packages on macOS

OpenColorlO

— brew install -vd opencolorio —with-python

Update the homebrew repository of install scripts to make sure that OpenImagelO is included.

— brew tap homebrew/science
Optional Dependencies for OpenlmagelO
— brew install -vd libRaw

— brew install -vd OpenCV

OpenlmagelO

— brew install -vd openimageio —with-python

CTL

— brew install -vd CTL

OpenColorlO, a second time. ociolutimage will build with openimageio installed.

— brew uninstall -vd opencolorio

— brew install -vd opencolorio —with-python

Thanks

The script used to generate these transforms and the transforms themselves were the product of work and conversations

with a number of people. Thanks go to:

Steve Agland

Joe Bogacz

Jack Binks

Scott Dyer

Alex Fry

Alex Forsythe
Joseph Goldstone
Stephen Hill

Jim Houston
Thomas Mansencal
Robert Molholm
Nikola Milosevic
Will McCown
Graeme Nattress

David Newman

3.2.

Configurations

23


http://opencolorio.org/installation.html
https://github.com/ampas/CTL

OpenColorlO Documentation, Release 1.1.1

* Sam Richards

* Erik Strauss

* Doug Walker

* Kevin Wheatley

Author

The original author of this OCIO config is:

¢ Haarm-Pieter Duiker

3.2.2 Config Creation

How to Configure ColorSpace Allocation

The allocation / allocation vars are utilized using during GPU 3dlut / shader text generation. (Proces-
sor::getGpuShaderText, Processor::getGpuLut3D).

If, in the course of GPU processing, a 3D lut is required, the “allocation / allocation vars” direct how OCIO should
sample the colorspace, with the intent being to maintain maximum fidelity and minimize clamping.

Currently support allocations / variables:
ALLOCATION_UNIFORM:: 2 vars: [min, max]
ALLOCATION_LG2:: 2 vars: [Ig2min, Ig2max] 3 vars: [lg2min, lg2max, linear_offset]

So say you have an srgb image (such as an 8-bit tif), where you know the data ranges between 0.0 - 1.0 (after converting
to float). If you wanted to apply a 3d lut to this data, there is no danger in samplingthat space uniformly and clamping
data outside (0,1). So for this colorspace we would tag it:

allocation: uniform
allocationvars: [0.0, 1.0]

These are the defaults, so the tagging could also be skipped.

But what if you were actually first processing the data, where occasionally small undershoot and overshoot values
were encountered? If you wanted OCIO to preserve this overshoot / undershoot pixel information, you would do so
by modifying the allocation vars.

allocation: uniform
allocationvars: [-0.125, 1.125]

This would mean that any image data originally within [-0.125, 1.125] will be preserved during GPU processing.
(Protip: Data outside this range may actually be preserved in some circumstances - such as if a 3d lut is not needed -
but it’s not required to be preserved).

So why not leave this at huge values (such as [-1000.0, 1000.0]) all the time? Well, there’s a cost to supporting this
larger dynamic range, and that cost is reduced precision within the 3D luts sample space. So in general you’'re best
served by using sensible allocations (the smallest you can get away with, but no smaller).

Now in the case of high-dynamic range color spaces (such as float linear), a uniform sampling is not sufficient because
the max value we need to preserve is so high.

Say you were using a 32x32x32 3d lookup table (a common size). Middle gray is at 0.18, and specular values are very
much above that. Say the max value we wanted to preserve in our coding space is 256.0, each 3d lut lattice coordinates

24 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

would represent 8.0 units of linear light! That means the vast majority of the perceptually significant portions of the
space wouldnt be sampled at all!

unform allocation from 0-256: 0 8.0 16.0 ... 240.0 256.0
So another allocation is defined, 1g2

- !<ColorSpace>
name: linear
description: |

allocation: 1lg2
allocationvars: [-8, 8]

In this case, we’re saying that the appropriate ways to sample the 3d lut are logarithmically, from 2/-8 stops to 28
stops.

Sample locations: 27-8: 0.0039 27-7: 0.0078 27-6: 0.0156 ... 270: 1.0 ... 276: 64.0 277: 128.0 2"8: 256.0

Which gives us a much better perceptual sampling of the space.

The one downside of this approach is that it can’t represent 0.0, which is why we optionally allow a 3d allocation var,
a black point offset. If you need to preserve 0.0 values, and you have a high dynamic range space, you can specify a
small offset.

Example:

allocation: 1lg2
allocationvars: [-8, 8, 0.00390625]

The [-15.0, 6.0] values in spi-vfx come from the fact that all of the linearizations provided in that profile span the
region from 2/-15 stops, to 276 stops. One could probably change that black point to a higher number (such as -8),
but if you raised it too much you would start seeing black values be clipped. Conversely, on the high end one could

raise it a bit but if you raised it too far the precision would suffer around gray, and if you lowered it further you’d start
to see highlight clipping.

3.3 Installation

3.3.1 The easy way

While prebuilt binaries are not yet available for all platforms, OCIO is available via several platform’s package man-
agers.

Fedora and RHEL

In Fedora Core 15 and above, the following command will install OpenColorlO:

yum install OpenColorIO

Providing you are using the Fedora EPEL repository (see the FAQ for instructions), this same command will work for
RedHat Enterprise Linux 6 and higher (including RHEL derivatives such as CentOS 6 and Scientific Linux 6)

OS X using Homebrew

You can use the Homebrew package manager to install OpenColorIO on OS X.

3.3. Installation 25


http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL/FAQ#Using_EPEL

OpenColorlO Documentation, Release 1.1.1

First install Homebrew as per the instructions on the Homebrew homepage (or see the Homebrew wiki for more
detailed instructions)

Then simply run the following command to install:

brew install opencolorio

To build with the Python library use this command:

brew install opencolorio —--with-python

3.3.2 Building from source
OS X and Linux

While there is a huge range of possible setups, the following steps should work on OS X and most Linux distros.
The basic requirements are:

* cmake >=2.8

* (optional) Python 2.x (for the Python bindings)

* (optional) Nuke 6.x or newer (for the Nuke nodes)

* (optional) OpenlmagelO (for apps including ocioconvert)

* (optional) Truelight SDK (for TruelightTransform)

To keep things simple, this guide will use the following example paths - these will almost definitely be different for
you:

* source code: /source/ocio

e the temporary build location: /tmp/ociobuild

* the final install directory: /software/ocio
First make the build directory and cd to it:

$ mkdir /tmp/ociobuild
$ cd /tmp/ociobuild

Next step is to run cmake, which looks for things such as the compiler’s required arguments, optional requirements
like Python, Nuke, OpenlmagelO etc

As we want to install OCIO to a custom location (instead of the default /usr/local), we will run cmake with
CMAKE_INSTALL_PREFIX

Still in /tmp/ociobuild, run:

S cmake -D CMAKE_INSTALL_PREFIX=/software/ocio /source/ocio

The last argument is the location of the OCIO source code (containing the main CMakeLists.txt file). You should see
something along the lines of:

—-— Configuring done
—— Generating done
—— Build files have been written to: /tmp/ociobuild

Next, build everything (with the -7 flag to build using 8 threads):

26 Chapter 3. Downloading and Building the Code


http://mxcl.github.com/homebrew/
https://github.com/mxcl/homebrew/wiki/Installation

OpenColorlO Documentation, Release 1.1.1

$ make -38

This should complete in a few minutes. Finally, install the files into the specified location:

$ make install

If nothing went wrong, /software/ocio should look something like this:

$ cd /software/ocio

S 1s

bin/ include/ 1lib/

$ 1s bin/

ocio2icc ociobakelut ociocheck

$ 1ls include/

OpenColorIO/ PyOpenColorIO/ pkgconfig/

$ 1ls 1lib/

1ibOpenColorIO.a 1ibOpenColorIO.dylib

Windows Build

While build environments may vary between user, here is an example batch file for compiling on Windows as provided
by @hodoulp:

@echo off

REM Grab the repo name, default is ocio_rw
set repo_name=ocio_rw

o

if not %1.==. set repo_name=%1

set CYGWIN=nodosfilewarning

set CMAKE_PATH=D:\OpenSource\cmake-3.9.3
set PYTHON_PATH=C:\Python27
set BOOST_ROOT=D:\SolidAngle\boost_1_55_0

set PATH=D:\Tools\cygwin64\bin; $CMAKE_PATH%\bin; $PYTHON_PATHS%; $PATH%

call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" amdé64

set OCIO_PATH=D:\OpenSource\%repo_name$

@doskey ne="D:\Tools\Notepad++\notepad++.exe" -nosession -multilInst $x
@doskey sub="D:\Tools\Sublime Text 3\subl.exe" --project %OCIO_PATH%_project.sublime-project

REM Decompose the directory change to avoid problems...
D:

IF NOT EXIST $%OCIO_PATHS% (

echo %0OCIO_PATH% does not exist
exit /b

)

cd $OCIO_PATHS%

3.3. Installation 27


https://github.com/hodoulp

OpenColorlO Documentation, Release 1.1.1

set CMAKE_BUILD_TYPE=Release

echo **xxxx*x*

echo PR B R I I I I R I I I I I I I b b I b b b b I b b b b

echo *#**%xxxx Building %OCIO_PATHS

echo *x*

echo *x*

set are_you_sure = Y

set /P are_you_sure=Build in $%$CMAKE_BUILD_TYPES% ([Y]/N)?
if not %are_you_sure%$==Y set CMAKE_BUILD_TYPE=Debug

set BUILD_PATH=_build_rls
if not %CMAKE_BUILD_TYPE%==Release set BUILD_PATH= build_dbg

IF NOT EXIST %$BUILD_PATH% ( mkdir $BUILD_PATH% )
cd %BUILD_PATHS

echo *x*
echo *x

cmake -G "NMake Makefiles" *
—-DCMAKE_BUILD_TYPE=%CMAKE_BUILD_TYPE% *
~-DCMAKE_INSTALL_PREFIX=%0CIO_PATHS$\_install *
-DOCIO_BUILD_TESTS=ON *
$OCIO_PATHS%

set PATH=%0OCIO_PATH%\%BUILD_PATH%\src\core; $PATHS

REM Find the current branch

set GITBRANCH=

for /f %%I in ('git.exe rev-parse —-abbrev-ref HEAD 27> NUL’) do set GITBRANCH=%%I
if not "S$GITBRANCHS" == "" prompt S$SC$GITBRANCHS$SF S$PSG

echo ***x%*x*x%

eChO KA KK A AR AR KA KRR A AR AR AR A IR A IR A AR A AR AR A AR A AR XKk

echo boost = %$BOOST_ROOT%

echo cmake = %CMAKE_PATHS%

echo ***x%*%%x%

if not "$GITBRANCHS" == "" echo branch = $GITBRANCH%
echo ***x%%x*x%

echo Mode = %CMAKE_BRUILD_TYPE%

echo path = $OCIO_PATH%\%BUILD_PATHS

echo compile = nmake all

echo test = nmake test

EChO **xxhhkkhhkhhhkkkrxhhhhhhhkhkkkxkhkhhhhhkkk kA xkkkkkkkkx

echo ***x%%x%x%

Also look to the Appveyor config script at the root of repository for an example build sequence.

28 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Enabling optional components
The OpenColorlO library is probably not all you want - the Python libraries bindings, the Nuke nodes and several
applications are only built if their dependencies are found.

In the case of the Python bindings, the dependencies are the Python headers for the version you wish to use. These
may be picked up by default - if so, when you run cmake you would see:

-— Python 2.6 okay, will build the Python bindings against .../include/python2.6

If not, you can point cmake to correct Python executable using the -D PYTHON=. . . cmake flag:

$ cmake -D PYTHON=/my/custom/python2.6 /source/ocio

Same process with Nuke (although it less likely to be picked up automatically). Point cmake to your Nuke install

directory by adding -D NUKE_INSTALL_PATH:

$ cmake -D PYTHON=/my/custom/python2.6 -D NUKE_INSTALL_PATH=/Applications/Nuke6.2v1/Nuke6.2vl.app/Cor
The NUKE_INSTALL_PATH directory should contain the Nuke executable (e.g Nuke6.2vl), and a include/ di-

rectory containing DDImage/ and others.

If set correctly, you will see something similar to:

—-— Found Nuke: /Applications/Nuke6.2v1/Nuke6.2vl.app/Contents/MacOS/include
—— Nuke_ API_VERSION: ——6.2——

The Nuke plugins are installed into 1ib/nuke$MAJOR. $MINOR/, e.g 1ib/nuke6.2/0CIODisdplay.so

Note: If you are using the Nuke plugins, you should compile the Python bindings for the same version of Python that
Nuke uses internally. For Nuke 6.0 and 6.1 this is Python 2.5, and for 6.2 it is Python 2.6

The applications included with OCIO have various dependencies - to determine these, look at the CMake output when
first run:

—— Not building ocioconvert. Requirement (s) found: OIIO:FALSE

3.3.3 Quick environment configuration
The quickest way to set the required Environment variables is to source the share/ocio/setup_ocio. sh script
installed with OCIO.

For a simple single-user setup, add the following to ~/ .bashrc (assuming you are using bash, and the example
install directory of /software/ocio):

source /software/ocio/share/ocio/setup_ocio.sh

The only environment variable you must configure manually is OCI 0O, which points to the configuration file you wish
to use. For prebuilt config files, see the Downloads section

To do this, you would add a line to ~/ . bashrc (or a per-project configuration script etc), for example:

export OCIO="/path/to/my/config.ocio"

3.3.4 Nuke Configuration

If you specified the NUKE_INSTALL_PATH option when running cmake, you should have a
/software/ocio/lib/nuke6. 2 directory containing various files.

3.3. Installation 29



OpenColorlO Documentation, Release 1.1.1

If you have followed Quick environment configuration, the plugins should be functional. However, one common
additional configuration step is to register an OCIODisplay node for each display device/view specified in the config.

To do this, in a menu.py on NUKE_PATH (e.g ~/ . nuke/menu. py for a single user setup), add the following:

import ocionuke.viewer
ocionuke.viewer.populate_viewer (also_remove = "default")

The also_remove argument can be set to either “default” to remove the default SRGB/rec709 options, “all” to
remove everything, or “none” to leave existing viewer processes untouched.

Alternatively, if your workflow has different requirements, you can copy the function and modity it as required, or use
it as reference to write your own, better viewer setup function!

import nuke

def register_viewers(also_remove = "default"):

"""Registers the a viewer process for each display device/view, and
sets the default viewer process.

vy

‘‘also_remove can be set to either:
- "default" to remove the default sRGB/rec709 viewer processes
- "all" to remove all processes

- "none" to leave existing viewer processes untouched
mrmmn

if also_remove not in ("default", "none", "all"):
raise ValueError ("also_remove should be set to "default’, ’'none’ or "all’™)

if also_remove == "default":
nuke.ViewerProcess.unregister (' rec709")
nuke.ViewerProcess.unregister (' sRGB’)
nuke.ViewerProcess.unregister (' None’)
elif also_remove == "all":
# Unregister all processes, including None, which should be defined in config.ocio
for curname in nuke.ViewerProcess.registeredNames () :
nuke.ViewerProcess.unregister (curname)

# Formats the display and transform, e.g "FilmlD (sRGB)"
DISPLAY_UI_FORMAT = "% (view)s (2 /(d y)s)"

import PyOpenColorIO as OCIO
config = OCIO.GetCurrentConfig/()

# For every display, loop over every view
for display in config.getDisplays():
for view in config.getViews (display) :
# Register the node
nuke.ViewerProcess.register (
name = DISPLAY_UI_FORMAT % {’view’: view, "display": display},
call = nuke.nodes.OCIODisplay,
args = (),
kwargs = {"display": display, "view": view, "layer": "all"})

# Get the default display and view, set it as the default used on Nuke startup
defaultDisplay = config.getDefaultDisplay ()
defaultView = config.getDefaultView (defaultDisplay)

30

Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

nuke.knobDefault (
"Viewer.viewerProcess",
DISPLAY_UI_FORMAT % {’view’: defaultView, "display": defaultDisplay})

3.3.5 Environment variables

OCIO
This variable needs to point to the global OCIO config file, e.g config.ocio

OCIO_LOGGING_LEVEL
Configures OCIO’s internal logging level. Valid values are none, warning, info, or debug (or their re-
spective numeric values 0, 1, 2, or 3 can be used)

Logging output is sent to STDERR output.

OCIO_ACTIVE_DISPLAYS
Overrides the active_displays configuration value. Colon-separated list of displays, e.g SRGB:P3

OCIO_ACTIVE_VIEWS
Overrides the active_views configuration item. Colon-separated list of view names, e.g
internal:client:DI

DYLD_LIBRARY PATH
The 1ib/ folder (containing 1ibOpenColorIO.dylib) must be on the DYLD_LIBRARY_PATH search
path, or you will get an error similar to:

dlopen(.../OCIOColorSpace.so, 2): Library not loaded: 1ibOpenColorIO.dylib
Referenced from: .../OCIOColorSpace.so
Reason: image not found

This applies to anything that links against OCIO, including the Nuke nodes, and the PyOpenColorIO Python
bindings.

LD LIBRARY PATH
Equivalent to the DYLD_LIBRARY_PATH on Linux

PYTHONPATH
Python’s module search path. If you are using the PyOpenColorlO module, you must add 1ib/python2.x
to this search path (e.g python/2.5), or importing the module will fail:

>>> import PyOpenColorIO
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named PyOpenColorIO

Note that DYLD_LIBRARY_PATH or LD_LIBRARY_ PATH must be set correctly for the module to work.

NUKE_PATH
Nuke’s customization search path, where it will look for plugins, gizmos, init.py and menu.py scripts and other
customizations.

This should point to both 1ib/nuke6.2/ (or whatever version the plugins are built against), and
share/nuke/

3.3. Installation 31



OpenColorlO Documentation, Release 1.1.1

3.4 User Guide

These guides will focus on a specific task (for example, writing a basic config, or setting up per-shot LUT’s). For a
“broader picture” expiation of how to use OCIO, see the Configurations section

3.4.1 Tool overview

OCIO is comprised of many parts. At the lowest level there is the C++ API. This API can be used in applications and

plugins

Note that all these plugins use the same config file to define color spaces, roles and so on. For information on setting

up configurations, see Configurations

The API

Most users will never directly interact with the C++ APIL. However the API is used by all the supplied applications (e.g
ocio2Zicc) and plugins (e.g the Nuke plugins)

To get started with the API, see the Developer Guide

ociocheck

This is a command line tool which shows an overview of an OCIO config file, and check for obvious errors

For example, the following shows the output of a config with a typo - the colorspace used for compositing_log

is not incorrect:

$ ociocheck —--iconfig example.ocio

OpenColorIO Library Version: 0.8.3

OpenColorIO Library VersionHex:
Loading example.ocio

*%x General x*x*
Search Path: luts
Working Dir: /tmp

Default Display: sRGB
Default View: Film

*x Roles xx*

ncf (default)

1Inf (scene_linear)

NOT DEFINED (compositing_log)

*x ColorSpaces xx
Inf

1gf

ncf

srgb8 —-- output only

ERROR: Config failed sanitycheck.

Tests complete.

525056

The role ’compositing_log’ refers to a colorspace, ’'lgff’,

32

Chapter 3. Downloading and Building the Code

which i



OpenColorlO Documentation, Release 1.1.1

It cannot verify the defined color transforms are “correct”, only that the config file can be loaded by OCIO without
error. Some of the problems it will detect are:

* Duplicate colorspace names

» References to undefined colorspaces
* Required roles being undefined

* At least one display device is defined

As with all the OCIO command line tools, you can use the —help argument to read a description and see the other
arguments accepted:

$ ociocheck —--help

ociocheck —-- wvalidate an OpenColorIO configuration
usage: ociocheck [options]
—-—help Print help message

-—iconfig %s Input .ocio configuration file (default: $OCIO)
—--oconfig %s Output .ocio file

ociobakelut

A command line tool which bakes a color transform into various color lookup file formats (“a LUT”)
This is intended for applications that have not directly integrated OCIO, but can load LUT files
If we want to create a 1nf to srgb8 viewer LUT for Houdini’s MPlay:

$ ociobakelut —--inputspace scene_linear --shaperspace 1gl0 --outputspace srgb8 --format houdini houd:

The ——inputspace and —outputspace options specify the colorspace of the input image, and the displayed
image.

Since a 3D LUT can only practically operate on 0-1 (e.g a Log image), the ——shaperspace option is specified.
This uses the Houdini LUT’s 1D “pretransform” LUT to do “Inf” to “lg10”, then the 3D LUT part to go from “lg10”
to “srgb8” (basically creating a single file containing a 1D linear-to-log LUT, and a 3D log-to-sRGB LUT)

To make a log to sSRGB LUT for Flame, the usage is similar, except the shaperspace option is omitted, as the input
colorspace does not have values outside 0.0-1.0 (being a Log space):

$ ociobakelut —--inputspace 1gl0 —--outputspace srgb8 —--format flame flame_ 1gl0_to_srgb.3dl

See the What LUT Formats are supported? section for a list of formats that support baking

ocio2icc

A command line tool to generate an ICC “proofing” profile from a color space transform, which can be used in
applications such as Photoshop.

A common workflow is for matte-painters to work on sRGB files in Photoshop. An ICC profile is used to view the
work with the same film emulation transform as used in other departments.

ocioconvert

Loads an image, applies a color transform, and saves it to a new file.

3.4. User Guide 33



OpenColorlO Documentation, Release 1.1.1

OpenlmagelO is used to open and save the file, so a wide range of formats are supported.

ociodisplay
A basic image viewer. Uses OpenlmagelO to load images, and displays them using OCIO and typical viewer controls
(scene-linear exposure control and a post-display gamma control)

May be useful to users to quickly check colorspace configuration, but primarily a demonstration of the OCIO API

Nuke plugins

A set of OCIO nodes for The Foundry’s Nuke, including:

* OCIOColorSpace, transforms between two color spaces (similar to the built-in “ColorSpace” node, but the
colorspaces are described in the OCIO config file)

* OCIODisplay to be used as viewer processes
* OCIOFileTransform loads a transform from a file (e.g a 1D or 3D LUT), and applies it
¢ OCIOCDLTransform applies CDL-compliant grades, and includes utilities to create/load ASC CDL files

3.4.2 Baking LUT’s

Sometimes it is necessary to write a color transform as a lookup-table file

This is usually because an application does not natively support OCIO (unlike, say, Nuke which various OCIO nodes),
but can load a LUT of some kind. This would currently include applications like Autodesk Flame, Adobe Photoshop,
SideFX’s MPlay (Houdini’s “Image Viewer”)

Remember that baking a LUT is not a perfect solution. Different LUT formats have various limitations. Certain
applications might apply LUT’s differently (often incorrectly), and some formats simply cannot accurately represent
certain transforms. Others might require carefully selecting shaper spaces and so on.

Be sure to carefully test the generated LUT in the target application. Burning the LUT into a test image (such as
Marcie!), and carefully comparing to a reference is often the only way to be sure a LUT is correct.

Config-based baking

This section assumes you have a working OCIO config.
The config can either be specified by setting the OCIO environment variable:
bash$ export 0OCIO=~/path/to/spi-vfx/config.ocio
Alternatively the config can be specified as a command-line argument to the ociobakelut command, ——iconfig
~/path/to/spi-vfx/config.ocio
These examples will use the spi-vfx config, specifically the following colorspaces
e 1nf - scene-referred linear light colorspace (reference colorspace)
* 1910 - film log colorspace (0-1 colorspace)
* srgb8 - sSRGB display colorspace

Remember these are just for the examples - you can of course use any config and any colorspaces

34 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Log-input display LUT

Say we have a 1g10 image in MPlay (maybe a ”.cin” film scan), and wish to view it in our main display colorspace,
srgb8

The available formats are listed in the ociobakelut —-help - for MPlay, we use the “houdini” format (see /e
FAQ for a more detailed list)

So, to create a LUT that transforms from 1g10 to srgb8:

bash$ ociobakelut --format houdini —--inputspace 1gl0 —--outputspace srgb8 log_to_display.lut

We could then load this LUT into MPlay and view a Ig10 image correctly! (note that by MPlay tries to linearise ”.cin”
files by default, which can be disabled in the preferences, “Convert form 10bit Log”)

For most other applications, we could simply change the ——format

Shaper spaces

Before we create a LUT to view linear-light images, it’s important to understand shaper-spaces and preluts.

The two main types of LUT’s are 1D and 3D. Such LUT formats typically require input values in the 0.0-1.0 range.
Such a LUT would be unsuitable for linear-light values input images (where values are often over 1)

To address this, various LUT formats contain a smaller “prelut” (or “shaper LUT”) which is applied before the main
LUT. This is used to transform the input values into a 0-1 range (typically a linear-to-log type transform)

In terms of color-transforms, the prelut transforms from “input-space” to “shaper-space”, then the main LUT trans-
forms from “shaper-space” to “output-space”

Some formats do not support such a shaper LUT - these are typically used in applications which do not work with
floating-point images (e.g Lustre often works with 10-bit integer DPX’s, so it’s natively supported “—format lustre”
(3DL) format has no need for a prelut)

Linear-light input display LUT

With shaper-spaces explained, lets say we have a 1nf linear light image in MPlay, and wish to view it in the srgb8
colorspace.

To create this LUT accurately, without clipping, we will use the LUT’s prelut to transform from 1nf to 1g10, then
the 3D LUT will transform from 1g10 to srgb8

Sounds complicated, but the command is almost the same as before, just with the ——shaperspace argument (and
—-—inputspace changed, of course):

bash$ ociobakelut --format houdini —--inputspace 1lnf --shaperspace 1gl0 —--outputspace srgb8 lin_to_di:

Allocation-based prelut

If your allocation variables are setup correctly, you can omit the ——shaperspace argument, and a prelut will be
automatically created based on the allocation vars (see the linked page for more information)

Since the colorspaces in the config we are using (spi-vfx) have their allocation variables set correctly, we could simplify
the 1nf to srgb8 bake command:

bash$ ociobakelut —--format houdini --inputspace 1lnf —--outputspace srgb8 lin_to_display_allocbased. lut

3.4. User Guide 35



OpenColorlO Documentation, Release 1.1.1

This command creates a very different prelut to the explicitly specified ——shaperspace 1gl0 in the previous
example. Explicitly specifying a shaper can produce better results, however the allocation-based prelut usually works
nicely, and is convinient

Note that allocation-var based preluts is baker-format dependant, and not all formats currently implement them

Config-free baking

You can perform baking without using a OCIO config. This means you don’t have to create a temporary config just
to, say, convert from one LUT format to another.

Converting between formats

Say we have a houdini LUT named 1og_to_display.lut. To convert this to a Flame compatible 3dl file, simply
run:

ociobakelut —-—-format flame --lut log_to_display.lut for_flame.3dl

Reversing a 1D LUT

You can apply a LUT in reverse, and write this to a new LUT (this does not work for 3D LUT’s, but will for 1D
LUT’s):

bash$ ociobakelut --format flame --invlut logtosrgb.3dl srgbtolog.3dl

Creating a grade LUT

You can create a LUT which applies CDL-compliant grades:

ociobakelut —--format cinespace --slope 1.2 1.0 0.9 mygrade.csp

Combining options

These options can be used together, or used multiple times.
For example, to perform a slope offset, then apply “mylut.csp”, saving it out for Lustre:

bash$ ociobakelut --format lustre —--slope 2.0 1.5 0.4 --lut mylut.csp output.3dl

ICC profiles (Photoshop)
Photoshop is very focused around print and graphic-design, industries with very different color management concerns
to modern feature-film VFX. As such, it can be a pain to integrate.

The main issue is current versions of Photoshop (CS5) are only practical for working with 16-bit integer images (not
floating point/linear-light images as is common in compositing software)

The second issue is there is no simple way to load a simple 1D or 3D LUT into Photoshop (and its API does not make
this easy either!)

36 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

A working space

First, we need to decide on a colorspace to use for the images in Photoshop. This is the colorspace in which matte-
paintings will be performed (likely a different colorspace that used for texture-painting, as these have different require-
ments)

The working space should be a “0-1 colorspace”, reversable, and for matte-paintings ideally allow painting values over
“diffuse white” (in other words, to paint values over 1.0 when converted to linear-light in comp)

This is a facility-dependant workflow choice.

For this example we will use the vd1 6 colorspace, as described by the spi-vfx

Creating display LUT

“Proofing profiles” in Photoshop can be used in a very similar way to a display LUT in applications like Nuke. This
proof-profile can be used to apply a 3D color transform from the working-space to a display space (e.g transform from
vdl16 to srgb8 in the spi-vfx config)

These proofing-profiles are ICC profiles - a rather print-specific technology and relatively complex format
Luckily, ociobakelut can be used to create these... but, first, there are some important considerations:
It is important to match the ——displayicc option to the profile used for the display.

Secondly, Photoshop has a lot of print-focused color-management options, some of which can cause problems.

Determine display ICC

On OS X, launch “System Preferences”, open “Displays” and click “Color” tab. The currently active ICC profile is
selected.

If you just want something simple that “probably matches” a Linux machine, say, it is easiest to uncheck “Show
profiles for this display only” and select the “sRGB IEC61966-2.1" profile. You can skip the rest of this section in this
case.

® System Preferences Edit View Window Help
8eo0o0 L226WTP
| 4| b | Show All | Q

| Display P ssllDn

Display profile:

Apple RCB | Open Profile
CIE RCB

ColorMatch RGB

Ceneric RGE Profile |
PAL/SECAM

ProPhoto RGE

SMPTE-C

sRGB IECB1966-2.1

Delete Profile

Calibrate...

3.4. User Guide 37



OpenColorlO Documentation, Release 1.1.1

However, if you have a specific display-profile selected (maybe created by monitor-calibration software), you should
do the following:

Click “Open Profile”, and right-click the icon in the top of the window, and click the folder:

— e |
e 00 | & sRGB Color Space Profile.icm
# | Tag M Recommended
(] Profiles

1 ‘'desc ' 3] Color i
2 ‘eprt ' [ Adobe i
3 'wipt' ¥ 9 . t
4 'bkpt y || Application Support [
S vXY7 y [ Library r

This reveals the current profile in Finder. You can drag the file onto a Terminal.app window to get the full path (or,
type it manually)

Create the ICC profile

Almost done now. We can write the ICC profile!
The full command is, using our example colorspaces of vd16 and srgb8:

bash$ ociobakelut —--format icc —--inputspace vdlé —--outputspace srgb8 --displayicc /path/to/my/monito:

The first three options are the same as any other LUT:

bash$ ociobakelut --format icc —--inputspace vdlé6 —--outputspace srgb8 [...]

Then we specify the display ICC profile:

[...] ——displayicc /path/to/my/monitorprofile.icc [...]

We can set the description (shown in Photoshop), and as the last argument, specify:

[...] ——description "vdl6 to srgb8" [...]

Finally an argument for the output file:
[...] vd16_to_srgb.icc

If you selected the “sRGB IEC61966-2.1” display profile, you can omit the ——displayicc argument (it defaults to
an standard sRGB profile):

bash$ ociobakelut --format icc —--inputspace vdlé —--outputspace srgb8 --description "vdlé to srgb8"
Loading the “display LUT”

Last step is to load the ICC profile into Photoshop, and enable it.

On OS X, these can be put into:

38 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

/Library/ColorSync/Profiles/

(or the equivelant directory in your home-directory)
On Windows, right-click the profile and select “Install profile”

Then on either platform, click “View > Proof Setup > Custom...”

Window Help

Proof Setup Custom...
Proof Colors 3 Y

Select your profile from the “Device to simulate” dropdown (the name is what you supplied with ——description):

Customize Proof C

Custom Proof Condition: | Custom

— Proof Conditions

Device to Simulate: | vd16 to srgbh8

[EI Preserve RGB Numbers

Rendering Intent: | Relative Colorimetric

Black Point Compensation

Display Options {On-5creen)
Simulate Paper Color

|| Simulate Black Ink

As pictured, selecting “Preserve RGB numbers”, and deselecting “Simulate Black Ink™ is a good starting point (see
the next section on “Other color settings”)

Finally, you can load an image in your working space, and click “View > Proof Colors”, or hit cmd+y (or ctrl+y)

When active, the profile name is shown in the window title (e.g ”.... (RGB/16#/vd16 to srgb8”, where the part after
the “#/” is the profile name, “RGB/16” indicates the current image mode)

Other color settings

(note this guide is based on Photoshop CS5, and written while checking the OS X version, although most of these
apply similarly on Windows 7)

3.4. User Guide 39



OpenColorlO Documentation, Release 1.1.1

Itis usually possible to get a matte-painting to look identical in Photoshop as it does in a more VFX-friendly application
such as Nuke.

However, as mentioned Photoshop has a lot of color-management related options, many of which can impair the match
between it and other applications. The operating system also has some controls (as seen before with the ColorSync
display profile)

The settings that require tweaking have a tendency to change with OS versions, Photoshop versions and the phase
of the moon. The only way to be sure is to compare Photoshop side-by-side with a LUT-reference-image (ideally
toggling between Photoshop and Nuke):

O O O |« marcie_vd_16.tiff @ 16.7% (RGB/16#/v...

448, 448 485

Wizl

The most improtant settings are in the “View > Proof Setup > Custom ...” menu.

The recommended “Preserve RGB” setting works sometimes. Other times disabling “Preserve RGB Numbers” and
selecting “Rendering Intent: Relative Colorimetric” can be closer.

It is safest to not assign a profile to the images you are working on - this is done by clicking “Edit > Assign Profile”,
and selecting “Don’t Color Manage This Document”.

In closing, of course none of this matters if you don’t have a calibrated monitor!

3.4.3 Contexts

OCIO’s allows different LUT’s or grades to be applied based on the current context.

These contexts are usually based on environment variables, but also allows on-the-fly context switching in applications
that operate on multiple shots (such as playback tools)

Typically these would be used as part of the display transform, to apply shot-specific looks (such as a CDL color
correction, or a 1D grade LUT)

A contrived example

The simplest way to explain this feature is with examples. Say we have two shots, ab-123 and s£f-432, and each
shot requires a different LUT to view. The current shot name is stored in the environment variable SHOT.

In the OCIO config, you can use this SHOT environment variable to construct the LUT’s path/filename. This path can
be absolute (e.g /example/path/${SHOT} .spild), or relative to any directory on the OCIO search path, which
includes the resource path (e.g $ { SHOT} .spild)

This is a simplified example, to demonstrate the context feature. Typically this “contextual LUT” would be used in
conjuction with other LUT’s (e.g before a scene-linear to log transform, followed by a 3D film emulation LUT), this
will be covered in Per-shot grades

40 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

So, we have our empty OCIO config in ~/showcfg, and our two LUTs in ~/showcfg/luts which are named
af-123.spildand sf-432.spild:

~/showcfg/
config.ocio
luts/
af-123.spild
sf-432.spild

In the config, we first specify the config version, and the resource path (usually this is relative to the directory contain-
ing config.ocio, although can be an absolute path):

ocio_profile_version: 1
resource_path: luts

Next, we define a colorspace that transforms from the show reference space to the display colorspace:

colorspaces:
- !<ColorSpace>
name: srgb8
family: srgb
bitdepth: 8ui
from_reference: !<FileTransform> {src: S${SHOT}.spild}

Then add a display alias for this transform:

displays:

— !<Display> {device: sRGB, name: "Shot LUT", colorspace: srgb8}
Finally, we point the OCIO env-variable to the config, set the SHOT env-variable to the shot being worked on, and
launch Nuke (or any other OCIO-enabled application):

export OCIO=~/showcfg/config.ocio
export SHOT=af-123
nuke

In Nuke, we create an OCIODisplay node, select our “sRGB” device with the “Shot LUT” transform, and this will
apply the af-123.spild LUT.

Per-shot grades

Similarly to LUTs, we use a . cc file (an XML file containing a single ASC CDL <ColorCorrection>), or a
. ccc file (an XML file containing multiple ASC CDL color corrections, each with a unique ID)

The .cc file is applied identically to a regular LUT files, using a FileTransform. For example, if we have
af-123.ccinthe luts/ directory:

<ColorCorrection id="mygrade">

<SOPNode>
<Slope>2 1 1</Slope>
<Offset>0 0 0</Offset>
<Power>1 1 1</Power>

</SOPNode>

<SATNode>
<Saturation>1l</Saturation>

</SATNode>

</ColorCorrection>

3.4. User Guide 41



OpenColorlO Documentation, Release 1.1.1

We wish to apply this grade on the scene-linear image, then transform into log and apply a 3D print emulation LUT.
Since this requires multiple transforms, instead of using a single FileTransform, we use a GroupTransform

(which is is just a collection of other transforms):

colorspaces:
- !<ColorSpace>
name: 1lnh
family: 1n
bitdepth:
isdata:

16f:
false

- !<ColorSpace>
1910
family: 1lg
bitdepth:

isdata:
to_reference:

name:

10ui
false
!<FileTransform> {src: 1gl0.spild,
!<ColorSpace>
srgb8
family: srgb
bitdepth: 8ui
isdata: false
from_reference:
children:

— I<FileTransform> {src: S$S{SHOT}.cc}

- !<ColorSpaceTransform> {src: 1lnh, dst: 1glO}

— I<FileTransform> {src: film _emulation.

name:

!<GroupTransform>

spi3d,

interpolation:

nearest}

interpolation: linear}

A .cccfile is a collection of <ColorCorrection>‘s. The only difference is when defining the FileTransform,
you must specify the cccdid key, which you can also construct using the context’s environment variables. This
means we could create a grades . ccc file containing the grade for all our shots:

<ColorCorrectionCollection xmlns="urn:ASC:CDL:v1.2">
<ColorCorrection id="af-123">
<SOPNode>
<Slope>2 1 1</Slope>
<Offset>0 0 0</Offset>
<Power>1 1 1</Power>
</SOPNode>
<SATNode>
<Saturation>1</Saturation>
</SATNode>
</ColorCorrection>
<ColorCorrection id="mygrade">
<SOPNode>
<Slope>0.9 0.7 0.9</Slope>
<Offset>0 0 0</Offset>
<Power>1 1 1</Power>
</SOPNode>
<SATNode>
<Saturation>1</Saturation>
</SATNode>
</ColorCorrection>
</ColorCorrectionCollection>

And the colorspace definition to utilise this:

42 Chapter 3.

Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

- !<ColorSpace>
name: srgb8
family: srgb
bitdepth: 8ui
isdata: false
from_reference: !<GroupTransform>

children:
— I<FileTransform> {src: grades.ccc, cccid: S${SHOT}}
- !<ColorSpaceTransform> {src: lnh, dst: 1gl0
— I<FileTransform> {src: film emulation.spi3d, interpolation:

A complete example

linear}

Warning: This is incomplete, the Inh_graded space is likely wrong

The context feature can be used to accommodate complex grading pipelines. In this example, we have a “neutral grade”
for each shot, to neutralise color casts and exposure variations, keeping plates consistent throughout a sequence.

To view a shot, we reverse this neutral grade, apply a “beauty grade”, then apply the display transform (the usual

lin-to-log and a film emulation LUT)

We will use the same two example shots from before, af-123 (which is in the af sequence) and sg-432 (in the sg
sequence). Imagine we have many shots in each sequence, so we wish to put the grades for each sequence in a

separate file.

Using the same directory structure as above, in ~/showcfg/luts we first create two grade files,

grades_af.ccc

<ColorCorrectionCollection xmlns="urn:ASC:CDL:v1.2">
<ColorCorrection id="af/af-123/neutral">

<SOPNode>
<Slope>2 1 1</Slope>
<Offset>0 0 0</Offset>
<Power>1 1 1l</Power>

</SOPNode>

<SATNode>
<Saturation>1</Saturation>

</SATNode>

</ColorCorrection>

<ColorCorrection id="af/af-123/beauty">

<SOPNode>
<Slope>1.5 1.2 0.9</Slope>
<Offset>0 0 0</Offset>
<Power>1 1 1</Power>

</SOPNode>

<SATNode>
<Saturation>0.8</Saturation>

</SATNode>

</ColorCorrection>

<!-- More ColorCorrection’s... ——>
</ColorCorrectionCollection>

And grades_sg.ccc:

3.4. User Guide

43



OpenColorlO Documentation, Release 1.1.1

<ColorCorrectionCollection xmlns="urn:ASC:CDL:v1.2">
<ColorCorrection id="sg/sg-432/neutral">

<SOPNode>
<Slope>0.9 0.7 0.9</Slope>
<Offset>0 0 0</Offset>
<Power>1 1 1</Power>

</SOPNode>

<SATNode>
<Saturation>1</Saturation>

</SATNode>

</ColorCorrection>

<ColorCorrection id="sg/sg-432/beauty">

<SOPNode>
<Slope>1.1 0.9 0.8</Slope>
<Offset>0 0 0</Offset>
<Power>1.2 0.9 1.5</Power>

</SOPNode>

<SATNode>
<Saturation>1</Saturation>

</SATNode>

</ColorCorrection>

<!-- More ColorCorrection’s.. ——>
</ColorCorrectionCollection>

Next, we create the config.ocio file, containing a colorspace to define several colorspaces:
e 1nh, the scene-linear, 16-bit half-float space in which compositing will happen
* 1g10, the 10-bit log space in which material will be received (e.g in .dpx format)
* srgb8, the display colorspace, for viewing the neutrally graded footage on an sRGB display
* srgb8graded, another display colorspace, for viewing the final “beauty grade”

ocio_profile_version: 1

# The directory relative to the location of this config
resource_path: "luts"

roles:
scene_linear: 1lnh
compositing_log: 1lgf

displays:
# Reference to display transform, without reversing the working grade
— !<Display> {device: sRGB, name: FilmlD, colorspace: srgb8}

# Reference to display, reversing the working grade, and applying
# the beauty grade
— !<Display> {device: sRGB, name: FilmlDGraded, colorspace: srgb8graded}

colorspaces:

# The source space, containing a log to scene-linear LUT
- !<ColorSpace>

name: 1gl0

family: 1lg

bitdepth: 10ui

44 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

isdata: false
to_reference: !<FileTransform> {src: lglO.spild, interpolation: nearest}

# Our scene-linear space (reference space)
— !<ColorSpace>

name: 1lnh

family: 1n

bitdepth: 16f

isdata: false

# Neutrally graded scene—linear
— !<ColorSpace>

name: lnh_graded

family: 1n

bitdepth: 16f

isdata: false

to_reference: !<FileTransform> {src: "grades_S${SEQ}.ccc", cccid: "S${SEQ}/${SHOT}/neutral"}

# The display colorspace - how to get from scene-linear to sRGB
— !<ColorSpace>

name: srgb8

family: srgb

bitdepth: 8ui

isdata: false

from_reference: !<GroupTransform>

children:
- !<ColorSpaceTransform> {src: Ilnh, dst: 1gl0}
- I<FileTransform> {src: lg to_srgb.spi3d, interpolation: linear}

# Display color, with neutral grade reversed, and beauty grade applied
- !<ColorSpace>
name: srgb8graded
family: srgb
bitdepth: 8ui
isdata: false
from_reference: !<GroupTransform>
children:
— !<FileTransform> {src: "grades_S${SEQ}.ccc", cccid: "S${SEQ}/S{SHOT}/neutral",
- I<FileTransform> {src: "grades_S${SEQ}.ccc", cccid: "S${SEQ}/S${SHOT} /beauty", d
— !<ColorSpaceTransform> {src: 1lnh, dst: srgb8}

3.4.4 Looks

A “look” is a named color transform, intended to modify the look of an image in a “creative” manner (as opposed
to a colorspace definition which tends to be technically/mathematically defined). An OCIO look typically exists as a
flexible addendum to a defined viewing transform.

Examples of looks may be a neutral grade, to be applied to film scans prior to VFX work, or a per-shot DI grade
decided on by the director, to be applied just before the viewing transform.

Looks are defined similarly to colorspaces, you specify a name and a transform (possibly a GroupTransform containing
several other transforms), and optionally an inverse transform.

Where looks differ from colorspace definions are in how they are applied. With a look, you also specify the “process
space” - the colorspace in which the transform is applied.

3.4. User Guide 45

direction:

irection:

in

fory



OpenColorlO Documentation, Release 1.1.1

Example configuration

Step 1: Setup a Look

A look is a top-level OCIO configuration object. Conceptually, it’s a named transform which gets applied in a specific
color space. All of the changes below to the .ocio configs can be done manually by editing the text, or using the Python
APL

Example look definition in a OCIO config:

looks:
- !<Look>
name: di
process_space: rclglb
transform: !<FileTransform> {src: look_di.cc, interpolation: linear}

Example Python API call:

look = OCIO.Look (name=’di’, processSpace='rclgl6’)

t = OCIO.FileTransform(’look _di.cc’, interpolation=0CIO.Constants.INTERP_LINEAR)
look.setTransform(t)

config.addLook (look)

The src file can be any LUT type that OCIO supports (in this case, it’s a file that contains the <ColorCorrection>
element from a CDL file.) You could also specify a .3dl, etc.

Once you define a look in your configuration, you’ll see that the OCIOLookTransform node in Nuke will provide
the named option. In this example, the ‘DI’ look conceptually represents a look that will be applied in DI. Other
look names we often used are ‘onset’, ‘editorial’, etc. The process_space specifies that the transform should be
applied in that space. In this example, if you provide linear input to the OCIOLookTransform node, the pixels will
be converted to rc1gl6 before applying the 1ook_di . cc file-transform.

Step 2: Update the Display to use a look.

You can specify an optional ‘looks’ tag in the View tag, which will apply the specified look(s). This lets application in
the viewer provide options which use the looks.

Example YAML config:

displays:
DLP:
- I<View> {name:
- I<View> {name:
- I<View> {name:
- I<View> {name:

sRGB:
- I<View> {name: Raw, nclO}
- !<View> {name: Log, rclglO}
- I<View> {name: Film, space: srgblO}
- !<View> {name: Film DI, colorspace: srgblO, looks: di}
Example Python API call:
for name, colorspace,look in [ [’Raw’,’ncl0O’,’’]1, [’'Log’,’rclglO’,”’17,

["Film’,’p3dcil6’,’’]1, ['Film DI’,’p3dcil6’,’di’] 1:
config.addDisplay (' DLP’,name, colorspace, look)

for name,colorspace,look in [ [’Raw’,’nclO’,’’]1, [’'Log’,’rclglO’,”’1,
["Film’,’srgbl0’,’’], ['Film DI’,’srgblQ0’,’di’] 1:
config.addDisplay (’ sRGB’,name,colorspace, look)

46 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Option for advanced users: The looks tag is actually a comma-delimited list supporting +/- modifiers. So if you you
wanted to specify a View that undoes DI, and then adds Onset, you could do “-di,+onset”.

Step 3: Get per-shot looks supported.

In the top example, look_di.cc, being a relative path location, will check each location in the config’s search_path. The
first file that’s found will be used.

So if your config contains:

search_path: luts

... then only the ‘luts’ subdir relative to the OCIO config will be checked.
However if you specify:

search_path: /shots/show/$SHOT/cc/data:luts

...the directory ‘/shots/show/$SHOT/cc/data/” will be evaluated first, and only if not found will the ‘luts’ directory be
checked.

env-vars, absolute, and relative paths can be used both in the config’s search_path, as well as the View’s src
specification.

Example:

- !<Look>
name: di
process_space: rclglb

transform: !<FileTransform> {src: looks/S$SSHOT_di/current/look S$SHOT_di.cc, interpolation:

Note that if the per-shot lut is not found, you can control whether a fallback LUT succeeds based on if it’s in the master
location. You can also use this for multiple levels (show, shot, etc).

Advanced option: If some shots use .cc files, and some use 3d-luts currently there’s no simple way to handle this.
What we’d recommend as a work around is to label all of your files with the same extension (such as .cc), and then
rely on OCIO’s resiliance to misnamed lut files to just load them anyways. Caveat: this only works in 1.0.1+ (commit
sha-1: 6da3411ced)

Advanced option: In the Nuke OCIO nodes, you often want to preview looks ‘across shots’ (often for reference, same-
as, etc). You can override the env-vars in each node, using the ‘Context’ menu. For example, if you know that $SSHOT
is being used, in the context keyl you should specify ‘SHOT’, and the in valuel specify the shot to use (such as
dev.lookdev). You can also use expressions, to say parse a shot name out of [metadata "input/filename"]

Advanced option: If you are writing your own OCIO integration code, getProcessor will fail if the per-
shot lut is not found, and you may want to distinguish this error from other OCIO errors. For this rea-
son, we provide OCIO::ExceptionMissingFile, which can be explicitly caught (this can then handled using
OCIO::DisplayTransform::setLooksOverride ()). I'd expect image flipbook applications to use this
approach.

3.4.5 Config syntax

OpenColorlO is primarily controlled by a central configuration file, usually named config.ocio. This page will
only describe how to syntactically write this OCIO config - e.g. what transforms are available, or what sections are
optional.

This page alone will not help you to write a useful config file! See the Configurations section for examples of complete,
practical configs, and discussion of how they fit within a facilities workflow.

3.4. User Guide 47



OpenColorlO Documentation, Release 1.1.1

YAML basics

This config file is a YAML document, so it is important to have some basic knowledge of this format.
The Wikipedia article on YAML has a good overview.

OCIO configs typically use a small subset of YAML, so looking at existing configs is probably the quickest way to
familiarise yourself (just remember the indentation is important!)

Checking for errors
Use the ociocheck command line tool to validate your config. It will inform you of YAML-syntax errors, but more
importantly it performs various OCIO-specific “sanity checks”.

For more information, see the overview of ociocheck

Config sections

ocio_profile_version

Required.

By convention, the profile starts with ocio_profile_version.

This is an integer, specifying which version of the OCIO config syntax is used.
Currently there is only one OCIO profile version, so the value is always 1 (one)

ocio_profile_version: 1

search_path

Optional. Default is an empty search path.

search_path is a colon-separated list of directories. Each directory is checked in order to locate a file (e.g. a LUT).
This works is very similar to how the UNIX $PATH env-var works for executables.

A common directory structure for a config is:

config.ocio

luts/
1g10_to_lnf.spild
1gl0_to_p3.3d1l

For this, we would set search_path as follows:

search_path: "luts"

In a colorspace definition, we might have a FileTransform which refers to the LUT 1g10_to_lnf.spild. It will
look in the 1ut s directory, relative to the config.ocio file’s location.

Paths can be relative (to the directory containing config.ocio), or absolute (e.g. /mnt/path/to/my/luts)
Multiple paths can be specified, including a mix of relative and absolute paths. Each path is separated with a colon :

search_path: "/mnt/path/to/my/luts:luts"

Finally, paths can reference OCIO’s context variables:

48 Chapter 3. Downloading and Building the Code


http://en.wikipedia.org/wiki/YAML

OpenColorlO Documentation, Release 1.1.1

search_path: "/shots/show/$SHOT/cc/data:luts"

This allows for some clever setups, for example per-shot LUT’s with fallbacks to a default. For more information, see
the examples in Looks

strictparsing

Optional. Valid values are t rue and false. Default is t rue (assuming a config is present):

strictparsing: true

OCIO provides a mechanism for applications to extract the colorspace from a filename (the
parseColorSpaceFromString API method)

So for a file like example_render_v001_1nf.0001.exr it will determine the colorspace 1nf (it being the
right-most substring containing a colorspace name)

However, if the colorspace cannot be determined and strictparsing: true, it will produce an error.

If the colorspace cannot be determined and strictparsing: false, the default role will be used. This allows
unhandled images to operate in “non-color managed” mode.

Application authors should note: when no config is present (e.g. via SOCIO), the default internal profile specifies
strictparsing=false, and the default color space role is raw. This means that ANY string passed to OCIO
will be parsed as the default raw. This is nice because in the absence of a config, the behavior from your application
perspective is that the library essentially falls back to “non-color managed”.

luma

Deprecated. Optional. Default is the Rec.709 primaries specified by the ASC:
luma: [0.2126, 0.7152, 0.0722]

These are the luminance coefficients, which can be used by OCIO-supporting applications when adjusting saturation
(e.g. in an image-viewer when displaying a single channel)

Note: While the API method is not yet officially deprecated, 1uma is a legacy option from Imageworks’ internal,
closed-source predecessor to OCIO.

The luma value is not respected anywhere within the OCIO library. Also very few (if any) applications supporting
OCIO will respect the value either.

roles

Required.

A “role” is an alias to a colorspaces, which can be used by applications to perform task-specific color transforms
without requiring the user to select a colorspace by name.

For example, the Nuke node OCIOLogConvert: instead of requiring the user to select the appropriate log colorspace,
the node performs a transform between scene_linear and compositing_log, and the OCIO config specifies
the project-appropriate colorspaces. This simplifies life for artists, as they don’t have to remember which is the correct
log colorspace for the current project - the OCIOLogConvert always does the correct thing.

A typical role definition looks like this, taken from the spi-vfx example configuration:

3.4. User Guide 49



OpenColorlO Documentation, Release 1.1.1

roles:
color_picking: cpf
color_timing: 1gl0
compositing_log: lgf
data: ncf
default: ncf
matte_paint: vd8
reference: 1nf
scene_linear: 1nf
texture_paint: dtlé6

All values in this example (such as cpf, 1g10 and ncf) refer to colorspaces defined later the config, in the
colorspaces section.

A description of all roles. Note that applications may interpret or use these differently.

color_picking - colors in a color-selection Ul can be displayed in this space, while selecting colors in a
different working space (e.g. scene_linear or texture_paint)

color_timing - colorspace used for applying color corrections, e.g. user-specified grade within an image
viewer (if the application uses the DisplayTransform: : setDisplayCC API method)

compositing_log - a log colorspace used for certain processing operations (plate resizing, pulling keys,
degrain, etc). Used by the OCIOLogConvert Nuke node

data - used when writing data outputs such as normals, depth data, and other “non color” data. The colorspace
in this role should typically have data: true specified, so no color transforms are applied

default - when strictparsing: false, this colorspace is used as a fallback. If not defined, the
scene_linear roleis used

matte_paint - colorspace which matte-paintings are created in (for more information, see the guide on
baking ICC profiles for Photoshop, and spi-vfx)

reference - the colorspace against which the other colorspaces are defined

scene_linear - the scene-referred linear-to-light colorspace, often the same as the reference space
(see:ref:fag-terminology)

texture_paint - similar to matte_paint but for painting textures for 3D objects (see the description of
texture painting in SPI’s pipeline)

displays

Required.

This section defines all the display devices which will be used. For example you might have a SRGB display device
for artist workstations, a DCIP3 display device for the screening room projector.

Each display device has a number of “views”. These views provide different ways to display the image on the selected
display device. Examples of common views are:

“Film” to emulate the final projected result on the current display

“Log” to send log-space pixel values directly to the display, resulting in a “lifted” image useful for checking
black-levels.

“Raw” when assigned a colorspace with raw: vyes set will show the unaltered image, useful for tech-
checking images

An example of the displays section from the spi-vfx config:

50

Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

displays:
DCIP3:

- I<View> {name:

- I<View> {name:

— I<View> {name:

sRGB:
- !<View> {name: Film, colorspace:
- I<View> {name: Log, ) : 1
- I<View> {name: Raw, co n
- I<View> {name: Film, colorspace:

All the colorspaces (p3dci8, srgb8 etc) refer to colorspaces defined later in the config.

Unless the active_displays and active_views sections are defined, the first display and first view will be
the default.

active_displays

Optional. Default is for all displays to be visible, and to respect order of items in displays section.
You can choose what display devices to make visible in UI’s, and change the order in which they appear.
Given the example displays block in the previous section - to make the SRGB device appear first:
active_displays: [sRGB, DCIP3]

To display only the DCIP3 device, simply remove sRGB:

active_displays: [DCIP3]

The value can be overridden by the OCIO_ACTIVE_DISPLAYS env-var. This allows you to make the sRGB the only
active display, like so:

active_displays: [sR

Then on a review machine with a DCI P3 projector, set the following environment variable, making DCIP3 the only
visible display device:

export OCIO_ACTIVE_DISPLAYS="DCIP3"

Or specify multiple active displays, by separating each with a colon:

export OCIO_ACTIVE_DISPLAYS="DCIP3:sRGB"

active_views

Optional. Default is for all views to be visible, and to respect order of the views under the display.
Works identically to active_displays, but controls which views are visible.
Overridden by the OCIO_ACTIVE_VIEWS env-var:

export OCIO_ACTIVE_VIEWS="Film:Log:Raw"

looks

Optional.

3.4. User Guide 51



OpenColorlO Documentation, Release 1.1.1

This section defines a list of “looks”. A look is a color transform defined similarly to a colorspace, with a few important
differences.

For example, a look could be defined for a “first pass DI beauty grade”, which is used to view shots with a rough
approximation of the final grade.

When the look is defined in the config, you must specify a name, the color transform, and the colorspace in which the
grade is performed (the “process space”). You can optionally specify an inverse transform for when the look transform
is not trivially invertable (e.g. it applies a 3D LUT)

When an application applies a look, OCIO ensures the grade is applied in the correct colorspace (by converting from
the input colorspace to the process space, applies the look’s transform, and converts the image to the output colorspace)

Here is a simple 1ooks : section, which defines two looks:

looks:
- !<Look>
name: beauty
process_space: 1nf
transform: !<CDLTransform> {slope: [1, 2, 11}

- !<Look>
name: neutral
process_space: 1gl0
transform: !<FileTransform> {src: ’'neutral-${SHOT}-${SEQ}.csp’, interpolation: linear
inverse_transform: !<FileTransform> {src: ’'neutral-${SHOT}-${SEQ}-reverse.csp’, inte

Here, the “beauty” look applies a simple, static ASC CDL grade, making the image very green (for some artistic
reason!). The beauty look is appied in the scene-linear 1nf colorspace (this colorspace is defined elsewhere in the
config.

Next is a definition for a “neutral” look, which applies a shot-specific CSP LUT, dynamically finding the correct LUT
based on the SEQ and SHOT context variables.

For example if SEQ=ab and SHOT=1234, this look will search for a LUT named neutral-ab-1234.csp in
locations specified in search_path.

The process_space here is 1g10. This means when the look is applied, OCIO will perform the following steps:
* Transform the image from it’s current colorspace to the 1g10 process space
* Apply apply the FileTransform (which applies the grade LUT)
* Transform the graded image from the process space to the output colorspace

The “beauty” look specifies the optional inverse_transform, because in this example the neutral CSP files
contain a 3D LUT. For many transforms, OCIO will automatically calculate the inverse transform (as with the “beauty”
look), however with a 3D LUT the inverse transform needs to be defined.

If the look was applied in reverse, and inverse_transform as not specified, then OCIO would give a helpful
error message. This is commonly done for non-invertable looks

As in colorspace definitions, the transform can be specified as a series of transforms using the GroupTransform,
for example:

looks:
- !<Look>

name: beauty

process_space: 1nf

transform: !<GroupTransform>

children:

— !<CDLTransform> {sl
— I<FileTransform> (=

0L, 2, 11}
beauty.spild, interpolation: nearest}

52 Chapter 3. Downloading and Building the Code




OpenColorlO Documentation, Release 1.1.1

colorspaces

Required.

This section is a list of all the colorspaces known to OCIO. A colorspace can be referred to elsewhere within the config
(including other colorspace definitions), and are used within OCIO-supporting applications.

to_reference and from_reference Here is a example of a very simple colorspaces section, modified
from the spi-vfx example config:

colorspaces:

- !<ColorSpace>
name: 1nf
bitdepth: 32f
description: |

- !<ColorSpace>
name: 1glé6
bitdepth: 1l6ui
description: |

to_reference: !<FileTransform> {src: lgl6_to_Inf.spild, interpolation: nearest}

First the 1nf colorspace (short for linear float) is used as our reference colorspace. The name can be anything, but
the idea of a reference colorspace is an important convention within OCIO: all other colorspaces are defined as
transforms either to or from this colorspace.

The 1916 colorspace is a 16-bit log colorspace (see spi-vfx for an explaination of this colorspace). It has a name, a
bitdepth and a description.

The 1g16 colorspace is defined as a transform from 1g16 to the reference colorspace (1nf). That transform is to
apply the LUT 1g16_to_1nf.spild. This LUT has an input of 1gl6 integers and outputs linear 32-bit float
values

Since the 1D LUT is automatically invertable by OCIO, we can use this colorspace both to convert 1g16 images to
Inf, and 1nf imagesto 1gl6

Importantly, because of the reference colorspace concept, we can convert images from 1gl6 to the reference col-
orspace, and then on to any other colorspace.

Here is another example colorspace, which is defined using from_reference.

- !<ColorSpace>

name: srgb8

bitdepth: 8ui

description: |

from_reference: !<FileTransform> {src: srgb8.spi3d, interpolation: linear}
We use from_reference here because we have a LUT which transforms from the reference colorspace (1nf in
this example) to sSRGB.

In this case srgb8.spi3d is a complex 3D LUT which cannot be inverted, so it is considered a “display only”
colorspace. If we did have a second 3D LUT to apply the inverse transform, we can specify both to_reference
and from_reference

- !<ColorSpace>
name: srgb8

3.4. User Guide 53



OpenColorlO Documentation, Release 1.1.1

bitdepth: 8ui

description: |
from_reference: !<FileTransform> {src: Inf_ to srgb8.spi3d, interpolation: linear}
to_reference: !<FileTransform> {src: srgb8 to_ Inf.spi3d, interpolation: linear}

Using multiple transforms The previous example colorspaces all used a single transform each, however it is often
useful to use multiple transforms to define a colorspace.

- !<ColorSpace>
name: srgb8
bitdepth: 8ui
description: |

from_reference: !<GroupTransform>
children:
— !<ColorSpaceTransform> {src: Inf, dst: lgl6}
- I<FileTransform> {src: lgl6_to_srgb8.spi3d, interpolation: linear}

Here to get from the reference colorspace, we first use the ColorSpaceTransform to convert from 1nf to 1gl6,
then apply our 3D LUT on the log-encoded images.

This primarily demonstrates the meta-transform GroupTransform: a transform which simply composes two or
more transforms together into one. Anything that accepts a transform like FileTransform or CDLTransform
will also accept a GroupTransform

It is also worth noting the ColorSpaceTransform, which transforms between 1nf and 1g16 colorspaces (which
are defined within the current config).

Example transform steps This section explains how OCIO internally applies all the transforms. It can be skipped
over if you understand how the reference colorspace works.

colorspaces:

— !<ColorSpace>
name: 1nf
bitdepth: 32f
description: |

- !<ColorSpace>
name: 1glé6
bitdepth: 1l6ui
description: |

to_reference: !<FileTransform> {src: lgl6.spild, interpolation: nearest}
- !<ColorSpace>

name: srgb8

bitdepth: 8ui

description: |

from_reference: !<GroupTransform>

children:
- !<ColorSpaceTransform> {src: 1lnf, dst: 1lglé6}
— I<FileTransform> {src: 1gl6_to_src .spi3d, interpolation: inear}

54 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

To explain how this all ties together to display an image, say we have an image in the 1nf colorspace (e.g. a linear
EXR) and wish to convert it to srgb8 - the transform steps are:

* ColorSpaceTransformis applied, converting from Inf to 1g16
e The FileTransform is applied, converting from Ig16 to srgb8.

A more complex example: we have an image in the 1g1 6 colorspace, and convert to srgb8 (using the 1g16 definition
from earlier, or the spi-vfx config):

First OCIO converts from 1g16 to the reference space, using the transform defined in 1g16’s to_reference:
e FileTransform applies the 1g16.spild

With the image now in the reference space, srgb8’s transform is applied:
* ColorSpaceTransform to transform from Inf to 1g16

* FileTransform applies the 1g16_to_srgb8.spi3d LUT.

Note: OCIO has an transform optimizer which removes redundant steps, and combines similar transforms into one
operation.

In the previous example, the complete transform chain would be “Igl6 -> Inf, Inf -> 1g16, 1g16 -> srgb8”. However
the optimizer will reduce this to “lgl16 -> srgb”.

bitdepth Optional. Default: 32 £

Specify an appropriate bitdepth for the colorspace, and applications can use this to automatically output images in the
correct bit-depth.

Valid options are:
e 8ui
e 10ui
e 12ui
e 14ui
e 1l6ui
* 32ui
e 16f
e 32f
The number is in bits. ui stands for unsigned integer. £ stands for floating point.
Example:

- !<ColorSpace>
name: srgb8
bitdepth: 8ui

from_reference: [...]

isdata: Optional. Default: false. Boolean.

The isdata key on a colorspace informs OCIO that this colorspace is used for non-color data channels, such as the
“normals” output of a a multipass 3D render.

3.4. User Guide 55



OpenColorlO Documentation, Release 1.1.1

Here is example “non-color” colorspace from the spi-vfx config:

- !<ColorSpace>
name: ncf
family: nc
equalitygroup:
bitdepth: 32f
description: |

isdata: true
allocation: uniform

equalitygroup: Optional.
If two colorspaces are in the “equality group”, transforms between them are considered non-operations.
You might have multiple colorspaces which are identical, but operate at different bit-depths.

For example, see the 1g10 and 1g16 colorspaces in the spi-vfx config. If loading a 1g10 image and converting to
1g16, no transform is required. This is of course faster, but may cause an unexpected increase in precision (e.g. it
skip potential clamping caused by a LUT)

- !<ColorSpace>
name: 1lglé6
equalitygroup: lg
bitdepth: 1l6ui
to_reference: !<FileTransform> {src: lgl6.spild, inter

polation: nearest}
- !<ColorSpace>

name: 1glO

equalitygroup: lg

bitdepth: 10ui
to_reference: !<FileTransform> {src: 1gl0.spild, interpolation: nearest}

Do not put different colorspaces in the same equality group. For logical grouping of “similar” colorspaces, use
the family option.

family: Optional.
Allows for logical grouping of colorspaces within a UI.

For example, a series of “log” colorspaces could be put in one “family”. Within a UI like the Nuke
OCIOColorSpace node, these will be grouped together.

- !<ColorSpace>
name: kodaklog
family: log
equalitygroup: kodaklog
[...]

- !<ColorSpace>
name: si2klog
family: log
equalitygroup: si2klog
[...]

- !<ColorSpace>
name: rec709
family: display

56 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

equalitygroup: rec709
[...]

Unlike equalitygroup, the family has no impact on image processing.

allocation and allocationvars Optional.

These two options are used when OCIO transforms are applied on the GPU.

It is also used to automatically generate a “shaper LUT” when baking LUT’s unless one is explicitly specified (not all

output formats utilise this)

For a detailed description, see How to Configure ColorSpace Allocation
Example of a “0-1” colorspace

allocation: uniform

allocationvars: [0.0, 1.0]

allocation: 1lg2
allocationvars: [-15, 6]

description Optional.
A human-readable description of the colorspace.
The YAML syntax allows for either single-line descriptions:

- !<ColorSpace>
name: kodaklog
[...]

description: A concise description of the kodaklog colorspace.

Or multiple-lines:

- !<ColorSpace>
name: kodaklog
[...]
description:
This is a multi-line description of the kodaklog colorspace,
to demonstrate the YAML syntax for doing so.

Here is the second line. The first one will be unwrapped into
a single line, as will this one.

It’s common to use literal | block syntax to preserve all newlines:

— !<ColorSpace>
name: kodaklog

[...]

description: |

Available transforms

3.4. User Guide

57



OpenColorlO Documentation, Release 1.1.1

AllocationTransform

Transforms from reference space to the range specified by the vars:
Keys:

* allocation

* vars

e direction

CDLTransform

Applies an ASC CDL compliant grade
Keys:

* slope

e offset

* power

* sat

e direction

ColorSpaceTransform

Transforms from src colorspace to dst colorspace.
Keys:

* src

e dst

e direction

ExponentTransform

Raises pixel values to a given power (often referred to as “gamma”)
!<ExponentTransform> {value: [1.8, 1.8, 1.8, 1]}
Keys:

* value

e direction

FileTransform

Applies a lookup table (LUT)
Keys:

¢ src

58 Chapter 3

. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

* cccid
* interpolation

e direction

GroupTransform

Combines multiple transforms into one.

colorspaces:

- !<ColorSpace>
name: adxl0

to_reference: !<GroupTransform>
children:
- I<FileTransform> {src: adx_adxl0_to_cdd.spimtx}
— I<FileTransform> {src: adx cdd to cid.spimtx}

A group transform is accepted anywhere a “regular” transform is.

LogTransform

Applies a mathematical logarithm with a given base to the pixel values.
Keys:

* base

LookTransform

Applies a named look

MatrixTransform

Applies a matrix transform to the pixel values
Keys:

* matrix

e offset

e direction

TruelightTransform

Applies a transform from a Truelight profile.
Keys:

e config_root

3.4. User Guide

59



OpenColorlO Documentation, Release 1.1.1

e profile

* camera

e input_display
* recorder

* print

e lamp

* output_camera
e display

* cube_input

e direction

Note: This transform requires OCIO to be compiled with the Truelight SDK present.

3.5 Developer Guide

Some information on contributing to OCIO:

3.5.1 Getting started

Checking Out The Codebase

The master code repository is available on Github: http://github.com/imageworks/OpenColorIO

For those unfamiliar with git, the wonderful part about it is that even though only a limited number people have write
access to the master repository, anyone is free to create, and even check in, changes to their own local git repository.
Your local changes will not automatically be pushed back to the master repository, so everyone feel free to informally
play around with the codebase. Also - unlike svn - when you download the git repository you have a full copy of
the project’s history (including revision history, logs, etc), so the majority of code changes you will make, including
commits, do not require network server access.

The first step is to install git on your system. For those new to the world of git, GitHub has an excellent tutorial
stepping you through the process, available at: http://help.github.com/

To check out a read-only version of the repository (no GitHub signup required):

git clone git://github.com/imageworks/OpenColorIO.git ocio

For write-access, you must first register for a GitHub account (free). Then, you must create a local fork of the
OpenColorlO repository by visiting http://github.com/imageworks/OpenColorlO and clicking the “Fork™ icon. If you
get hung up on this, further instructions on this process are available at http://help.github.com/forking/

To check out a read-write version of the repository (GitHub acct required):

git clone git@github.com:SUSER/OpenColorIO.git ocio

Initialized empty Git repository in /mcp/ocio/.git/
remote: Counting objects: 2220, done.

remote: Compressing objects: 100% (952/952), done.
remote: Total 2220 (delta 1434), reused 1851 (delta 1168)

60 Chapter 3. Downloading and Building the Code


http://github.com/imageworks/OpenColorIO
http://help.github.com/
http://github.com/imageworks/OpenColorIO
http://help.github.com/forking/

OpenColorlO Documentation, Release 1.1.1

Receiving objects: 100% (2220/2220), 2.89 MiB | 2.29 MiB/s, done.
Resolving deltas: 100% (1434/1434), done.

Both read + read/write users should then add the Imageworks (SPI) master branch as a remote. This will allow you to
more easily fetch updates as they become available:

cd ocio
git remote add upstream git://github.com/imageworks/OpenColorIO.git

Optionally, you may then add any additional users who have individual working forks (just as you’ve done). This will
allow you to track, view, and potentially merge intermediate changes before they’re been pushed into the main trunk.
(For really bleeding edge folks). For example, to add Jeremy Selan’s working fork:

git remote add js git://github.com/jeremyselan/OpenColorIO.git

You should then do a git fetch, and git merge (detailed below) to download the remote branches you’ve just added.

Reference Build Environment

To aid new developers to the project and provide a baseline standard, OCIO provides a reference build environment
through Docker. Docker essentially is a container that consits of both a Linux distro and the dependencies needed to
run a client application. This is typically used for deploying apps and services to servers, but we are using it to provide
an isolated development environment to build and test OCIO with. With this environment you are guaranteed to be
able to compile OCIO and run its non-GUI command line applications.

For more information on Docker, start here: https://docs.docker.com/engine/docker-overview/
In order to run the Docker environment you will have to build it from the Dockerfile provided in the repo directory:

OpenColorIO/shared/docker

Run this command in order to build the Docker image (aprox. 20min):

docker build . -t ocio:centos7_gcc48 —-f dockerfile_centos7_gcc48

You can then mount the current OCIO directory and compile using the Docker image with:

docker run --volume S$PWD/../../:/src/ociosrc -t ocio:centos7_gcc48 bash —-c ’'mkdir /build && cd /buil

Merging changes

More detailed guide coming soon, for now, see http://help.github.com/remotes/

3.5.2 Coding guidelines

There are only two important rules:
1. When making changes, conform to the style and conventions of the surrounding code.

2. Strive for clarity, even if that means occasionally breaking the guidelines. Use your head and ask for advice if
your common sense seems to disagree with the conventions.

3.5. Developer Guide 61


https://docs.docker.com/engine/docker-overview/
http://help.github.com/remotes/

OpenColorlO Documentation, Release 1.1.1

File Conventions

C++ implementation should be named « . cpp. Headers should be named « . h. All source files should begin with the
copyright and license, which can be cut and pasted from other source files). For NEW source files, please do change
the copyright year to the present. However DO NOT edit existing files just to update the copyright year, it just creates
pointless deltas and offers no increased protection

Line Length

Each line of text in your code should be at most 80 characters long.
Generally the only exceptions are for comments with example commands or URLSs - to make cut and paste easier.

The other exception is for those rare cases where letting a line be longer (and wrapping on an 80-character window) is
actually a better and clearer alternative than trying to split it into two lines. Sometimes this happens, but it’s rare.

DO NOT alter somebody else’s code to re-wrap lines (or change whitespace) just because you found something that
violates the rules. Let the group/author/leader know, and resist the temptation to change it yourself.

Formatting
* Indent 4 spaces at a time, and use actual spaces, not tabs. This is particularly critical on python code. The only
exception currently allowed in within Makefiles, where tab characters are sometimes required.
* Opening brace on the line following the condition or loop.
* The contents of namespaces are not indented.
* Function names should be on the same line as their return values.

¢ Function calls should NOT have a space between the function name and the opening parenthesis. A single space
should be added after each required comma.

Here is a short code fragement that shows these concepts in action:

namespace

{

int MungeMyNumbers (int a, int b)
{

int x = a + b;
if (a == 0 || b==0)
{
x += 1;
X += 2;
}
else

{
for (int i=0; i<1l6; ++1i)
{
X += a % 1i;
}
}

return x;

62 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

} // namespace

Misc. Rules

* Avoid macros when possible.

* Anonymous namespaces are preferred when sensible.

* Variable names should be camelCase, as well as longAndExplicit.

¢ Avoid long function implementations. Break up work into small, manageable chunks.

* Use “TODO:” comments for code that is temporary, a short-term solution, or good-enough but not perfect. This
is vastly preferred to leaving subtle corner cases undocumented.

* Always initialize variables on construction.
* Do not leave dead code paths around. (This is what revision history is for)

¢ Includes should always be ordered as follows: C library, C++ library, other libraries’ .h, OCIO public headers,
OCIO private headers. Includes within a category should be alphabetized.

* The C++ “using” directive is not allowed.

* Static / global variables should be avoided at all costs.

 Use const whenever it makes sense to do so.

* The use of Boost is not allowed, except for unit_test_framework and shared_ptr.

* Default function arguments are not allowed.

Bottom Line
When in doubt, look elsewhere in the code base for examples of similar structures and try to format your code in the
same manner.

Portions of this document have been blatantly lifted from OpenlmagelO, and Google.

3.5.3 Documentation guidelines

OpenColorlO is documentated using reStructuredText, processed by Sphinx.
The documentation primarily lives in the docs/ folder, within the main OpenColorlO repoistory.
The rST source for the C++ API documentation is extracted from comments in the public header files in export /

The Python API documentation is extracted from dummy .py files within the src/pyglue/DocStrings/ folder

Building the docs

Just like a regular build from source, but specify the -D OCIO_BUILD_DOCS=yes argument to CMake.

Then run the make doc target. The default HTML output will be created in build_dir/docs/build-html/
Note that CMake must be run before each invokation of make to copy the edited rST files.

Initial run:

$ mkdir build && cd build

3.5. Developer Guide 63


http://openimageio.org/wiki/index.php?title=Coding_Style_Guide
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://sphinx-doc.org/

OpenColorlO Documentation, Release 1.1.1

Then after each change you wish to preview:

$ cmake -D OCIO_BUILD_DOCS=yes .. && make doc

Basics

* Try to keep the writing style consistent with surrounding docs.
* Fix all warnings output by the Sphinx build process. An example of such an warning is:

checking consistency... [...]/build/docs/userguide/writing_configs.rst:: WARNING: document isn’t

» Use the following hierarchy of header decorations:

Level 1 heading

Level 2 heading

kkhkhkkhkkkhkkkkkkk

Level 3 heading
++++++++ 4

Level 4 heading

» To add a new page, create a new . rst file in the appropriate location. In that directory’s index. rst, add the
new file to the toctree directive.

The new file should contain a top-level heading (decorated with ===== underline), and an approriate label for
referencing from other pages. For example, a new file docs/userguide/baking_luts.rst might start
like this:

. _userguide-bakingluts:

Baking LUT’s

In order to bake a LUT,

Emacs rST mode

Emacs’ includes a mode for editing rST files. It is documented on the docutils site

One of the features it includes is readjusting the hierarchy of heading decorations (the underlines for different heading
levels). To configure this to use OCIO’s convention, put the following in your .emacs.d/init.el:

(setq rst-preferred-decorations

)
)
)
)

o O O O

))

3.5.4 Submitting Changes

64 Chapter 3. Downloading and Building the Code


http://docutils.sourceforge.net/docs/user/emacs.html

OpenColorlO Documentation, Release 1.1.1

Code Review

Ask early, and ask often!

All new contributors are highly encouraged to post development ideas, questions, or any other thoughts to the Mailing
Lists before starting to code. This greatly improves the process and quality of the resulting library. Code reviews (par-
ticularly for non-trivial changes) are typically far simpler if the reviewers are aware of a development task beforehand.

(And, who knows? Maybe they will have implementation suggestions as well!)

GitHub Basics

This will outline the general mechanics of working with git and GitHub to successfully contribute to the project. If
any of the terms used are unfamiliar to you please do a quick search and then ask any of the contributors for assistance.

Fork the Imageworks OpenColorlO repository
Activate Travis-CI and Appveyor for your fork

Clone your fork to your local workspace:

git clone https://github.com/$USER/OpenColorIO.git

cd into the cloned directory

Connect your cloned repo to the original upstream repository as a remote:

git remote add upstream https://github.com/imageworks/OpenColorIO.git

You should now have two remotes:

git remote -v

origin https://github.com/$USER/OpenColorIO (fetch)
origin https://github.com/$USER/OpenColorIO (fetch)
upstream https://github.com/imageworks/OpenColorIO
upstream https://github.com/imageworks/OpenColorIO

Pull the latest changes from upstream:

git checkout master
git pull upstream master

Create a branch for your contribution:

git checkout -b myFeature

Check if it successfully compiles and passes all unit tests
Commit your changes:

git add
git commit -m ’Implement my feature’

Push your changes back to origin (your fork):

git push origin myFeature

Ensure that all CI tests complete on Travis-CI and Appveyor

Visit your fork in a web browser on github.com

When ready click the “New pull request” button, make sure it can merge, and add appropriate comments and

notes

3.5.

Developer Guide

65



OpenColorlO Documentation, Release 1.1.1

* Wait for code review and comments from the community

3.5.5 Issues

Please visit http://github.com/imageworks/OpenColorlO/issues for an up to date listing of bugs, feature requests etc

Instructions on using OCIO:

3.5.6 Usage Examples

Some examples of using the OCIO API, via both C++ and the Python bindings.

For further examples, see the src/apps/ directory in the git repository

Applying a basic ColorSpace transform, using the CPU

This describes what code is used to convert from a specified source ColorSpace to a specified destination
ColorSpace. If you are using the OCIO Nuke plugins, the OCIOColorSpace node performs these steps internally.

1.

C++

Get the Config. This represents the entirety of the current color “universe”. It can either be initialized by your
app at startup or created explicitly. In common usage, you can just query Get CurrentConfig (), which will
auto initialize on first use using the OC IO environment variable.

Get Processor from the Config. A processor corresponds to a ‘baked’ color transformation. You specify
two arguments when querying a processor: the ColorSpace you are coming from, and the ColorSpace you are
going to. ColorSpaces ColorSpaces can be either explicitly named strings (defined by the current configuration)
or can be Roles (essentially ColorSpace aliases) which are consistent across configurations. Constructing a
Processor objectis likely a blocking operation (thread-wise) so care should be taken to do this as infrequently
as is sensible. Once per render ‘setup’ would be appropriate, once per scanline would be inappropriate.

Convert your image, using the Processor. Once you have the processor, you can apply the color transformation
using the “apply” function. In C++, you apply the processing in-place, by first wrapping your image in an
ImageDesc class. This approach is intended to be used in high performance applications, and can be used on
multiple threads (per scanline, per tile, etc). In Python you call “applyRGB” / “applyRGBA” on your sequence
of pixels. Note that in both languages, it is far more efficient to call “apply” on batches of pixels at a time.

#include <OpenColorIO/OpenColorIO.h>
namespace OCIO = OCIO_NAMESPACE;

try
{

}

OCIO: :ConstConfigRcPtr config OCIO: :GetCurrentConfig();
ConstProcessorRcPtr processor = config->getProcessor (OCIO::ROLE_COMPOSITING_LOG,
OCIO: :ROLE_SCENE_LINEAR) ;

OCIO: :PackedImageDesc img(imageData, w, h, 4);
processor—->apply (img) ;

catch (OCIO: :Exception & exception)

{

std::cerr << "OpenColorIO Error: " << exception.what () << std::endl;

66

Chapter 3. Downloading and Building the Code


http://github.com/imageworks/OpenColorIO/issues

OpenColorlO Documentation, Release 1.1.1

Python

import PyOpenColorIO as OCIO

try:
config = OCIO.GetCurrentConfig()
processor = config.getProcessor (OCIO.Constants.ROLE_COMPOSITING_LOG,
OCIO.Constants.ROLE_SCENE_LINEAR)

# Apply the color transform to the existing RGBA pixel data
img = processor.applyRGBA (img)

except Exception, e:
print "OpenColorIO Error",e

Displaying an image, using the CPU (simple ColorSpace conversion)

Converting an image for display is similar to a normal color space conversion. The only difference is that one has
to first determine the name of the display (destination) ColorSpace by querying the config with the device name and
transform name.

1. Get the Config. See Applying a basic ColorSpace transform, using the CPU for details.
2. Lookup the display ColorSpace. The display ColorSpace is queried from the configuration using

Config::getDisplayColorSpaceName (). If the user has specified value for the device or the
displayTransformName, use them. If these values are unknown default values can be queried (as shown
below).

3. Get the processor from the Config. See Applying a basic ColorSpace transform, using the CPU for details.

4. Convert your image, using the processor. See Applying a basic ColorSpace transform, using the CPU for
details.

C++

#include <OpenColorIO/OpenColorIO.h>
namespace OCIO = OCIO_NAMESPACE;

OCIO::ConstConfigRcPtr config = OCIO::GetCurrentConfig();

// If the user hasn’t picked a display, use the defaults...

const char » device = config->getDefaultDisplayDeviceName () ;
const char * transformName = config->getDefaultDisplayTransformName (device);
const char » displayColorSpace = config->getDisplayColorSpaceName (device, transformName) ;

ConstProcessorRcPtr processor = config->getProcessor (OCIO::ROLE_SCENE_LINEAR,
displayColorSpace) ;

OCIO: :PackedImageDesc img(imageData, w, h, 4);
processor->apply (img) ;

Python

import PyOpenColorIO as OCIO

3.5. Developer Guide 67



OpenColorlO Documentation, Release 1.1.1

config = OCIO.GetCurrentConfig/()

device = config.getDefaultDisplayDeviceName ()
transformName = config.getDefaultDisplayTransformName (device)
displayColorSpace = config.getDisplayColorSpaceName (device, transformName)

processor = config.getProcessor (OCIO.Constants.ROLE_SCENE_LINEAR, displayColorSpace)

processor.applyRGB (imageData)

Displaying an image, using the CPU (Full Display Pipeline)

This alternative version allows for a more complex displayTransform, allowing for all of the controls typically added
to real-world viewer interfaces. For example, options are allowed to control which channels (red, green, blue, alpha,
luma) are visible, as well as allowing for optional color corrections (such as an exposure offset in scene linear). If you
are using the OCIO Nuke plugins, the OCIODisplay node performs these steps internally.

1. Get the Config. See Applying a basic ColorSpace transform, using the CPU for details.

2. Lookup the display ColorSpace. See Displaying an image, using the CPU (simple ColorSpace conversion)
for details

3. Create a new DisplayTransform. This transform will embody the full ‘display’ pipeline you wish to con-
trol. The user is required to call DisplayTransform: :set InputColorSpaceName () to set the input
ColorSpace, as well as DisplayTransform: :setDisplayColorSpaceName () (with the results of
Config::getDisplayColorSpaceName ()).

4. Set any additional DisplayTransform options. If the user wants to specify a channel swizzle, a scene-linear
exposure offset, an artistic look, this is the place to add it. See below for an example. Note that although we
provide recommendations for display, any transforms are allowed to be added into any of the slots. So if for
your app you want to add 3 transforms into a particular slot (chained together), you are free to wrap them in a
GroupTransform and set it accordingly!

5. Get the processor from the Config. The processor is then queried from the config passing the
new DisplayTransform as the argument. Once the processor has been returned, the original
DisplayTransform is no longer necessary to hold onto. (Though if you’d like to for re-use, there is no
problem doing so).

6. Convert your image, using the processor. See Applying a basic ColorSpace transform, using the CPU for
details.

C++

// Step 1: Get the config
OCIO: :ConstConfigRcPtr config = OCIO::GetCurrentConfig();

// Step 2: Lookup the display ColorSpace

const char » device = config->getDefaultDisplayDeviceName () ;
const char * transformName = config->getDefaultDisplayTransformName (device);
const char » displayColorSpace = config->getDisplayColorSpaceName (device, transformName) ;

// Step 3: Create a DisplayTransform, and set the input and display ColorSpaces
// (This example assumes the input is scene linear. Adapt as needed.)

OCIO::DisplayTransformRcPtr transform = OCIO::DisplayTransform::Create();
transform->setInputColorSpaceName ( OCIO::ROLE_SCENE_LINEAR );

68 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

transform->setDisplayColorSpaceName ( displayColorSpace );
// Step 4: Add custom transforms for a ’‘canonical’ Display Pipeline

// Add an fstop exposure control (in SCENE_LINEAR)

float gain = powf (2.0f, exposure_in_stops);

const float slope3f[] = { gain, gain, gain };

OCIO: :CDLTransformRcPtr cc = OCIO::CDLTransform: :Create();
cc—>setSlope (slope3f);

transform->setLinearCC (cc);

// Add a Channel view ’swizzle’

// ’channelHot’ controls which channels are viewed.
int channelHot[4] = { 1, 1, 1, 1 }; // show rgb
//int channelHot [4] , 0, 0, 0 }; // show red
//int channelHot [4] = , 0, 0, 1 }; // show alpha
//int channelHot [4] = , 1, 1, 0 }; // show luma

I
~_~— S .
_ O

float lumacoef[3];
config.getDefaultLumaCoefs (lumacoef) ;

float m44[16];

float offset[4];

OCIO: :MatrixTransform: :View (m44, offset, channelHot, lumacoef);

OCIO: :MatrixTransformRcPtr swizzle = OCIO::MatrixTransform: :Create();
swizzle—->setValue (m44, offset);

transform->setChannelView (swizzle);

// And then process the image normally.
OCIO: :ConstProcessorRcPtr processor = config->getProcessor (transform);

OCIO: :PackedImageDesc img(imageData, w, h, 4);
processor->apply (img) ;

Python

import PyOpenColorIO as OCIO

# Step 1: Get the config
config = OCIO.GetCurrentConfig/()

# Step 2: Lookup the display ColorSpace

device = config.getDefaultDisplayDeviceName ()

transformName = config.getDefaultDisplayTransformName (device)
displayColorSpace = config.getDisplayColorSpaceName (device, transformName)

# Step 3: Create a DisplayTransform, and set the input and display ColorSpaces
# (This example assumes the input is scene linear. Adapt as needed.)

transform = OCIO.DisplayTransform()
transform.setInputColorSpaceName (OCIO.Constants.ROLE_SCENE_LINEAR)

transform.setDisplayColorSpaceName (displayColorSpace)

# Step 4: Add custom transforms for a ’‘canonical’ Display Pipeline

3.5. Developer Guide 69



OpenColorlO Documentation, Release 1.1.1

# Add an fstop exposure control (in SCENE_LINEAR)
gain = 2xxexposure
slope3f = (gain, gain, gain)

cc = OCIO.CDLTransform()
cc.setSlope (slope3f)

transform.setLinearCC (cc)

# Add a Channel view ’‘swizzle’
channelHot = (1, 1, 1, 1) # show rgb

# channelHot = (1, 0, 0, 0) # show red

# channelHot = (0, 0, 0, 1) # show alpha
# channelHot = (1, 1, 1, 0) # show luma

lumacoef = config.getDefaultLumaCoefs ()
m44, offset = OCIO.MatrixTransform.View (channelHot, lumacoef)
swizzle = OCIO.MatrixTransform()

swizzle.setValue (m44, offset)
transform.setChannelView (swizzle)

# And then process the image normally.
processor = config.getProcessor (transform)

print processor.applyRGB (imageData)

Displaying an image, using the GPU
Applying OpenColorIO’s color processing using GPU processing is straightforward, provided you have the capability
to upload custom shader code and a custom 3D Lookup Table (3DLUT).

1. Get the Processor. This portion of the pipeline is identical to the CPU approach. Just get the processor as you
normally would have, see above for details.

Create a GpuShaderDesc.
Query the GPU Shader Text + 3D LUT.
Configure the GPU State.

A

Draw your image.

C++

This example is available as a working app in the OCIO source: src/apps/ociodisplay.

// Step 0: Get the processor using any of the pipelines mentioned above.
OCIO: :ConstConfigRcPtr config = OCIO::GetCurrentConfig();

const char » device = config->getDefaultDisplayDeviceName () ;
const char x transformName = config->getDefaultDisplayTransformName (device);
const char » displayColorSpace = config->getDisplayColorSpaceName (device, transformName) ;

ConstProcessorRcPtr processor = config->getProcessor (OCIO: :ROLE_SCENE_LINEAR,
displayColorSpace);

70 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

// Step 1: Create a GPU Shader Description
GpuShaderDesc shaderDesc;
shaderDesc.setLanguage (OCIO: :GPU_LANGUAGE_GLSL_1_0);
shaderDesc.setFunctionName ("OCIODisplay");

const int LUT3D_EDGE_SIZE = 32;
shaderDesc.setLut3DEdgeLen (LUT3D_EDGE_SIZE) ;

// Step 2: Compute and the 3D LUT
// Optional Optimization:

// Only do this the 3D LUT’s contents

// are different from the last drawn frame.

// Use getGpuLut3DCacheID to compute the cachelD.
// cheaply.

//

// std::string lut3dCacheID = processor—->getGpuLut3DCachelD (shaderDesc) ;
int num3Dentries = 3+«LUT3D_EDGE_SIZE+LUT3D_EDGE_SIZE+LUT3D_EDGE_SIZE;
std: :vector<float> g_lut3d;

g_lut3d.resize (num3Dentries);

processor->getGpulut3D (&g_lut3d[0], shaderDesc);

// Load the data into an OpenGL 3D Texture

glGenTextures (1, &g_lut3d_texturelD);

glBindTexture (GL_TEXTURE_3D, g_lut3d_texturelD);

glTexImage3D (GL_TEXTURE_3D, 0, GL_RGB,
LUT3D_EDGE_SIZE, LUT3D_EDGE_SIZE, LUT3D_EDGE_SIZE,
0, GL_RGB,GL_FLOAT, &g_lut3d[0]);

// Step 3: Query

C++ API documentation:

3.5.7 C++ API

Usage Example: Compositing plugin that converts from “log” to “lin”

#include <OpenColorIO/OpenColorIO.h>
namespace OCIO = OCIO_NAMESPACE;

try

{
// Get the global OpenColorIO config
// This will auto-initialize (using S$OCIO) on first use
OCIO: :ConstConfigRcPtr config = OCIO::GetCurrentConfig();

// Get the processor corresponding to this transform.
OCIO: :ConstProcessorRcPtr processor = config->getProcessor (OCIO: :ROLE_COMPOSITING_LOG,
OCIO: :ROLE_SCENE_LINEAR) ;

// Wrap the image in a light-weight ImageDescription
OCIO: :PackedImageDesc img(imageData, w, h, 4);

// Apply the color transformation (in place)
processor->apply (img) ;

}

catch (OCIO: :Exception & exception)

{

std::cerr << "OpenColorIO Error: " << exception.what () << std::endl;

3.5. Developer Guide 4



OpenColorlO Documentation, Release 1.1.1

Exceptions

class Exception
An exception class to throw for errors detected at runtime.

Warning: All functions in the Config class can potentially throw this exception.

Exception: :Exception (const char¥)
Constructor that takes a string as the exception message.

Exception: :Exception (const Exception&)
Constructor that takes an exception pointer.

Exception& Exception: :operator= (const Exception&)
Constructor that takes an exception pointer and returns an exception pointer (??7).

Exception: :~Exception ()
const char* Exception: :what () const

class ExceptionMissingFile
An exception class for errors detected at runtime, thrown when OCIO cannot find a file that is expected to exist.
This is provided as a custom type to distinguish cases where one wants to continue looking for missing files, but
wants to properly fail for other error conditions.

ExceptionMissingFile: :ExceptionMissingFile (const char*)
Constructor that takes a string as the exception message.

ExceptionMissingFile: :ExceptionMissingFile (const ExceptionMissingFile&)
Constructor that takes an existing exception.

Global

void ClearAllCaches ()
OpenColorlO, during normal usage, tends to cache certain information (such as the contents of LUTs on disk,
intermediate results, etc.). Calling this function will flush all such information. Under normal usage, this is not
necessary, but it can be helpful in particular instances, such as designing OCIO profiles, and wanting to re-read
luts without restarting.

const char* GetVersion ()
Get the version number for the library, as a dot-delimited string (e.g., “1.0.0”). This is also available at compile
time as OCIO_VERSION.

int GetVersionHex ()
Get the version number for the library, as a single 4-byte hex number (e.g., 0x01050200 for “1.5.2”), to be used
for numeric comparisons. This is also available at compile time as OCIO_VERSION_HEX.

Loggingl.evel GetLoggingLevel ()
Get the global logging level. You can override this at runtime using the OCTIO_LOGGING_LEVEL environment
variable. The client application that sets this should use SetLoggingLevel (), and not the environment
variable. The default value is INFO.

void SetLoggingLevel (Logginglevel level)
Set the global logging level.

72 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Config

A config defines all the color spaces to be available at runtime.

The color configuration (Config) is the main object for interacting with this library. It encapsulates all of the infor-
mation necessary to use customized ColorSpaceTransformand DisplayTransform operations.

See the User Guide for more information on selecting, creating, and working with custom color configurations.

For applications interested in using only one color config at a time (this is the vast majority of apps), their API would
traditionally get the global configuration and use that, as opposed to creating a new one. This simplifies the use case
for plugins and bindings, as it alleviates the need to pass around configuration handles.

An example of an application where this would not be sufficient would be a multi-threaded image proxy server (dae-
mon), which wished to handle multiple show configurations in a single process concurrently. This app would need to
keep multiple configurations alive, and to manage them appropriately.

Roughly speaking, a novice user should select a default configuration that most closely approximates the use case
(animation, visual effects, etc.), and set the OC IO environment variable to point at the root of that configuration.

Note: Initialization using environment variables is typically preferable in a multi-app ecosystem, as it allows all
applications to be consistently configured.

See Usage Examples

ConstConfigRcPtr GetCurrentConfig ()
Get the current configuration.

void SetCurrentConfig (const ConstConfigRcPtr& config)
Set the current configuration. This will then store a copy of the specified config.

class Config

Initialization

static ConfigRcPtr Config: :Create ()
Constructor a default empty configuration.

static ConstConfigRcPtr Config: :CreateFromEnv ()
Constructor a configuration using the OCIO environmnet variable.

static ConstConfigRcPtr Config: :CreateFromFile (const char* filename)
Constructor a configuration using a specific config file.

static ConstConfigRcPtr Config: : CreateFromStream (std::istream& istream)
ConfigRcPtr Config: :createEditableCopy () const

void Config: :sanityCheck () const
This will throw an exception if the config is malformed. The most common error occurs when references are
made to colorspaces that do not exist.

const char* Config: :getDescription() const
void Config: : setDescription (const char* description)

void Config: :serialize (std::ostream& os) const
Returns the string representation of the Config in YAML text form. This is typically stored on disk in a file with
the extension .ocio.

3.5. Developer Guide 73



OpenColorlO Documentation, Release 1.1.1

const char* Config: :getCacheID () const
This will produce a hash of the all colorspace definitions, etc. All external references, such as files used in
FileTransforms, etc., will be incorporated into the cacheID. While the contents of the files are not read, the file
system is queried for relavent information (mtime, inode) so that the config’s cacheID will change when the
underlying luts are updated. If a context is not provided, the current Context will be used. If a null context is
provided, file references will not be taken into account (this is essentially a hash of Config::serialize).

const char* Config: : getCacheID (const ConstContextRcPtr& context) const

Resources

Given a lut src name, where should we find it?

ConstContextRcPtr Config: :getCurrentContext () const

void Config: :addEnvironmentVar (const char* name, const char* defaultValue)
int Config: :getNumEnvironmentVars () const

const char* Config: :getEnvironmentVarNameByIndex (int index) const
const char* Config: :getEnvironmentVarDefault (const char* name) const
void Config: :clearEnvironmentVars ()

void Config: : setEnvironmentMode (EnvironmentMode mode)
EnvironmentMode Config: : getEnvironmentMode () const

void Config: :loadEnvironment ()

const char* Config: :getSearchPath () const

void Config: : setSearchPath (const char* path)

const char* Config: :getWorkingDir () const

void Config: : setWorkingDir (const char* dirname)

ColorSpaces

int Config: :getNumColorSpaces () const

const char* Config: :getColorSpaceNameByIndex (intindex) const
This will null if an invalid index is specified

Note: These fcns all accept either a color space OR role name. (Colorspace names take precedence over roles.)

ConstColorSpaceRcPtr Config: :getColorSpace (const char* name) const
This will return null if the specified name is not found.

int Config: :getIndexForColorSpace (const char* name) const

void Config: :addColorSpace (const ConstColorSpaceRcPtr& cs)

Note: If another color space is already registered with the same name, this will overwrite it. This stores a copy
of the specified color space.

void Config: :clearColorSpaces ()

74 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

const char* Config: :parseColorSpaceFromString (const char* str) const
Given the specified string, get the longest, right-most, colorspace substring that appears.

oIf strict parsing is enabled, and no color space is found, return an empty string.
oIf strict parsing is disabled, return ROLE_DEFAULT (if defined).
oIf the default role is not defined, return an empty string.

bool Config: :isStrictParsingEnabled () const

void Config: :setStrictParsingEnabled (bool enabled)

Roles

A role is like an alias for a colorspace. You can query the colorspace corresponding to a role using the normal
getColorSpace fen.

void Config: : setRole (const char* role, const char* colorSpaceName)

Note: Setting the colorSpaceName name to a null string unsets it.

int Config: :getNumRoles () const

bool Config: :hasRole (const char* role) const
Return true if the role has been defined.

const char* Config: :getRoleName (int index) const
Get the role name at index, this will return values like ‘scene_linear’, ‘compositing_log’. Return empty string if
index is out of range.

Display/View Registration

Looks is a potentially comma (or colon) delimited list of lookNames, Where +/- prefixes are optionally allowed to
denote forward/inverse look specification. (And forward is assumed in the absence of either)

const char* Config: :getDefaultDisplay () const

int Config: :getNumDisplays () const

const char* Config: :getDisplay (intindex) const

const char* Config: :getDefaultView (const char* display) const

int Config: :getNumViews (const char* display) const

const char* Config: :getView (const char* display, int index) const

const char* Config: :getDisplayColorSpaceName (const char* display, const char* view) const
const char* Config: :getDisplayLooks (const char* display, const char* view) const

void Config: :addDisplay (const char* display, const char* view, const char* colorSpaceName, const

char* looks)
For the (display,view) combination, specify which colorSpace and look to use. If a look is not desired, then just

pass an empty string
void Config: :clearDisplays ()

void Config: : setActiveDisplays (const char* displays)
Comma-delimited list of display names.

3.5. Developer Guide 75



OpenColorlO Documentation, Release 1.1.1

const char* Config: :getActiveDisplays () const

void Config: : setActiveViews (const char* views)
Comma-delimited list of view names.

const char* Config: :getActiveViews () const

Luma

Get the default coefficients for computing luma.

Note: There is no “1 size fits all” set of luma coefficients. (The values are typically different for each colorspace, and
the application of them may be nonsensical depending on the intensity coding anyways). Thus, the ‘right” answer is

to make these functions on the Config class. However, it’s often useful to have a config-wide default so here it is.
We will add the colorspace specific luma call if/when another client is interesting in using it.

void Config: :getDefaultLumaCoefs (float* rgh) const

void Config: : setDefaultLumaCoefs (const float* rgb)
These should be normalized (sum to 1.0 exactly).

Look

Manager per-shot look settings.

ConstLookRcPtr Config: : getLook (const char* name) const
int Config: :getNumLooks () const

const char* Config: : getLookNameByIndex (int index) const
void Config: :addLook (const ConstLookRcPtr& look)

void Config: :clearLooks ()

Processors

Convert from inputColorSpace to outputColorSpace

Note: This may provide higher fidelity than anticipated due to internal optimizations. For example, if the inputcol-
orspace and the outputColorSpace are members of the same family, no conversion will be applied, even though strictly

speaking quantization should be added.

If you wish to test these calls for quantization characteristics, apply in two steps; the image must contain RGB triples
(though arbitrary numbers of additional channels can be supported (ignored) using the pixelStrideBytes arg).

ConstProcessorRcPtr Config: : getProcessor (const ConstContextRcPtr& context, const ConstCol-
orSpaceRcPtr& srcColorSpace, const ConstColorSpac-
eRcPtr& dstColorSpace) const

ConstProcessorRcPtr Config: : getProcessor (const ConstColorSpaceRcPtr& srcColorSpace, const
ConstColorSpaceRcPtr& dstColorSpace) const

ConstProcessorRcPtr Config: : getProcessor (const char* srcName, const char* dstName) const

Note: Names can be colorspace name, role name, or a combination of both.

76 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

ConstProcessorRcPtr Config: : getProcessor (const ConstContextRcPtr& context, const char* srcName,
const char* dstName) const

Get the processor for the specified transform.

Not often needed, but will allow for the re-use of atomic OCIO functionality (such as to apply an individual LUT file).

ConstProcessorRcPtr Config: :getProcessor (const ConstTransformRcPtr& transform) const

ConstProcessorRcPtr Config: : getProcessor (const ConstTransformRcPtr& transform, TransformDi-
rection direction) const

ConstProcessorRcPtr Config: :getProcessor (const ConstContextRcPtr&  context, const Const-
TransformRcPtr& transform, TransformDirection
direction) const

ColorSpace
The ColorSpace is the state of an image with respect to colorimetry and color encoding. Transforming images between
different ColorSpaces is the primary motivation for this library.

While a complete discussion of color spaces is beyond the scope of header documentation, traditional uses would be to
have ColorSpaces corresponding to: physical capture devices (known cameras, scanners), and internal ‘convenience’
spaces (such as scene linear, logarithmic).

ColorSpaces are specific to a particular image precision (float32, uint8, etc.), and the set of ColorSpaces that provide
equivalent mappings (at different precisions) are referred to as a ‘family’.

class ColorSpace

static ColorSpaceRcPtr ColorSpace: :Create ()

ColorSpaceRcPtr ColorSpace: :createEditableCopy () const
const char* ColorSpace: :getName () const

void ColorSpace: : setName (const char* name)

const char* ColorSpace: :getFamily () const
Get the family, for use in user interfaces (optional)

void ColorSpace: : setFamily (const char* family)
Set the family, for use in user interfaces (optional)

const char* ColorSpace: :getEqualityGroup () const
Get the ColorSpace group name (used for equality comparisons) This allows no-op transforms between different
colorspaces. If an equalityGroup is not defined (an empty string), it will be considered unique (i.e., it will not
compare as equal to other ColorSpaces with an empty equality group). This is often, though not always, set to
the same value as ‘family’.

void ColorSpace: : setEqualityGroup (const char* equalityGroup)
const char* ColorSpace: :getDescription () const

void ColorSpace: : setDescription (const char* description)
BitDepth ColorSpace: :getBitDepth () const

void ColorSpace: : setBitDepth (BitDepth bitDepth)

3.5. Developer Guide 77



OpenColorlO Documentation, Release 1.1.1

Data

ColorSpaces that are data are treated a bit special. Basically, any colorspace transforms you try to apply to them are
ignored. (Think of applying a gamut mapping transform to an ID pass). Also, the DisplayTransform process
obeys special ‘data min’ and ‘data max’ args.

This is traditionally used for pixel data that represents non-color pixel data, such as normals, point positions, ID
information, etc.

bool ColorSpace: :isData () const

void ColorSpace: : setIsData (bool isData)

Allocation

If this colorspace needs to be transferred to a limited dynamic range coding space (such as during display with a GPU
path), use this allocation to maximize bit efficiency.

Allocation ColorSpace: :getAllocation () const
void ColorSpace: :setAllocation (Allocation allocation)
Specify the optional variable values to configure the allocation. If no variables are specified, the defaults are used.

ALLOCATION_UNIFORM:

2 vars: [min, max]

ALLOCATION_LG?2:

2 vars: [lg2min, lg2max]
3 vars: [lg2min, lg2max, linear_offset]

int ColorSpace: :getAllocationNumVars () const
void ColorSpace: :getAllocationVars (float* vars) const

void ColorSpace: : setAllocationVars (int numvars, const float* vars)

Transform

ConstTransformRcPtr ColorSpace: :getTransform (ColorSpaceDirection dir) const
If a transform in the specified direction has been specified, return it. Otherwise return a null ConstTransformR-
cPtr

void ColorSpace: : setTransform (const ConstTransformRcPtr& transform, ColorSpaceDirection dir)
Specify the transform for the appropriate direction. Setting the transform to null will clear it.

Look

The Look is an ‘artistic’ image modification, in a specified image state. The processSpace defines the ColorSpace the
image is required to be in, for the math to apply correctly.

class Look

static LookRcPtr Look : :Create ()

LookRcPtr Look : : createEditableCopy () const

78 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

const char* Look : :getName () const

void Look : : setName (const char* name)

const char* Look : :getProcessSpace () const

void Look : : setProcessSpace (const char* processSpace)
ConstTransformRcPtr Look : :getTransform() const

void Look : : setTransform (const ConstTransformRcPtr& transform)
Setting a transform to a non-null call makes it allowed.

ConstTransformRcPtr Look : :getInverseTransform() const

void Look : : setInverseTransform (const ConstTransformRcPtr& transform)
Setting a transform to a non-null call makes it allowed.

const char* Look : :getDescription () const

void Look : : setDescription (const char* description)

Processor

class Processor

static ProcessorRcPtr Processor: :Create ()

bool Processor: :isNoOp () const

bool Processor: :hasChannelCrosstalk () const

does the processor represent an image transformation that introduces crosstalk between the image chan-
nels

ConstProcessorMetadataRcPtr Processor: :getMetadata () const

CPU Path

void Processor: :apply (ImageDesc& img) const
Apply to an image.

Apply to a single pixel.

Note: This is not as efficient as applying to an entire image at once. If you are processing multiple pixels, and have
the flexibility, use the above function instead.

void Processor: :applyRGB (float* pixel) const
void Processor: : applyRGBA (float* pixel) const

const char* Processor: :getCpuCachelID () const

GPU Path

Get the 3d lut + cg shader for the specified DisplayTransform.

cg signature will be:

3.5. Developer Guide 79



OpenColorlO Documentation, Release 1.1.1

shaderFcnName (in half4 inPixel, const uniform sampler3D lut3d)

Iut3d should be size: 3 * edgeLen * edgeLen * edgeLen return O if unknown
const char* Processor: : getGpuShaderText (const GpuShaderDesc& shaderDesc) const

const char* Processor: : getGpuShaderTextCacheID (const GpuShaderDesc&
shaderDesc) const

void Processor: : getGpuLut 3D (float* lur3d, const GpuShaderDesc& shaderDesc) const
const char* Processor: :getGpuLut3DCacheID (const GpuShaderDesc& shaderDesc) const

class ProcessorMetadata
This class contains meta information about the process that generated this processor. The results of these func-
tions do not impact the pixel processing.

static ProcessorMetadataRcPtr ProcessorMetadata: :Create ()
intProcessorMetadata: :getNumFiles () const

const char* ProcessorMetadata: :getFile (int index) const
int ProcessorMetadata: :getNumLooks () const

const char* ProcessorMetadata: : getLook (int index) const
void ProcessorMetadata: :addFile (const char* fname)

void ProcessorMetadata: : addLook (const char* [ook)

Baker

In certain situations it is necessary to serialize transforms into a variety of application specific lut formats. The Baker
can be used to create lut formats that ocio supports for writing.

Usage Example: Bake a houdini sRGB viewer lut

OCIO::ConstConfigRcPtr config = OCIO::Config::CreateFromEnv () ;
OCIO: :BakerRcPtr baker = OCIO::Baker::Create();
baker->setConfig(config);

baker->setFormat ("houdini"); // set the houdini type
baker—->setType ("3D"); // we want a 3D lut
baker->setInputSpace ("1nf");
baker—->setShaperSpace ("log");
baker->setTargetSpace ("sRGB") ;

std::ostringstream out;

baker->bake (out); // fresh bread anyone!

std::cout << out.str();

static BakerRcPtr Create ()
create a new Baker

BakerRcPtr createEditableCopy () const
create a copy of this Baker

void setConfig (const ConstConfigRcPtr& config)
set the config to use

ConstConfigRcPtr getConfig () const
get the config to use

80 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

void setFormat (const char* formatName)
set the Iut output format

const char* getFormat () const
get the lut output format

void setType (const char* type)
set the Iut output type (1D or 3D)

const char* getType () const
get the lut output type

void setMetadata (const char* metadata)
set optional meta data for luts that support it

const char* getMetadata () const
get the meta data that has been set

void set InputSpace (const char* inputSpace)
set the input ColorSpace that the lut will be applied to

const char* get InputSpace () const
get the input ColorSpace that has been set

void set ShaperSpace (const char* shaperSpace)
set an optional ColorSpace to be used to shape / transfer the input colorspace. This is mostly used to allocate an
HDR luminance range into an LDR one. If a shaper space is not explicitly specified, and the file format supports
one, the ColorSpace Allocation will be used

const char* get ShaperSpace () const
get the shaper colorspace that has been set

void setLooks (const char* looks)
set the looks to be applied during baking Looks is a potentially comma (or colon) delimited list of lookNames,
Where +/- prefixes are optionally allowed to denote forward/inverse look specification. (And forward is assumed
in the absence of either)

const char* getLooks () const
get the looks to be applied during baking

void setTargetSpace (const char* targetSpace)
set the target device colorspace for the lut

const char* getTargetSpace () const
get the target colorspace that has been set

void setShaperSize (int shapersize)
override the default the shaper sample size, default: <format specific>

int getShaperSize () const
get the shaper sample size

void setCubeSize (int cubesize)
override the default cube sample size default: <format specific>

int getCubeSize () const
get the cube sample size

void bake (std::ostream& os) const
bake the lut into the output stream

static int getNumFormats ()
get the number of lut writers

3.5. Developer Guide 81



OpenColorlO Documentation, Release 1.1.1

static const char* getFormatNameByIndex (int index)
get the lut writer at index, return empty string if an invalid index is specified

ImageDesc
const ptrdiff_t AutoStride
AutoStride

class ImageDesc
This is a light-weight wrapper around an image, that provides a context for pixel access. This does NOT claim
ownership of the pixels or copy image data

ImageDesc: :~ImageDesc ()

PackedimageDesc

class PackedImageDesc

PackedImageDesc: :PackedImageDesc (float* data, long width, long height, long numChan-
nels, ptrdiff_t chanStrideBytes=AutoStride, ptrdiff_t xStride-

Bytes=AutoStride, ptrdiff_t yStrideBytes=AutoStride)
Pass the pointer to packed image data: rgbrgbrgb, etc. The number of channels must be greater than or equal to

3 If a 4th channel is specified, it is assumed to be alpha information. Channels > 4 will be ignored.
PackedImageDesc: : ~PackedImageDesc ()
float* PackedImageDesc: :getData () const
long PackedImageDesc: :getWidth () const
long PackedImageDesc: :getHeight () const
long PackedImageDesc: :getNumChannels () const
ptrdiff_t PackedImageDesc: :getChanStrideBytes () const
ptrdiff_t PackedImageDesc: :getXStrideBytes () const

ptrdiff_t PackedImageDesc: :getYStrideBytes () const

PlanarimageDesc

class PlanarImageDesc

PlanarImageDesc: :PlanarImageDesc (float* rData, float* gData, float* bData, float* aData, long
width, long height, ptrdiff_t yStrideBytes=AutoStride)
Pass the pointer to the specified image planes: rrrr gggg bbbb, etc. aData is optional, pass NULL if no alpha
exists. {r,g,b} Data must be specified

PlanarImageDesc: :~PlanarImageDesc ()

float* PlanarImageDesc: :getRData () const
float* PlanarImageDesc: :getGData () const
float* PlanarImageDesc: :getBData () const
float* PlanarImageDesc: :getAData () const

long PlanarImageDesc: :getWidth () const

82 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

long PlanarImageDesc: :getHeight () const

ptrdiff_t PlanarImageDesc: :get¥StrideBytes () const

GpuShaderDesc

class GpuShaderDesc
GpuShaderDesc: :GpuShaderDesc ()
GpuShaderDesc: : ~GpuShaderDesc ()

void GpuShaderDesc: : setLanguage (GpuLanguage lang)
Set the shader program language

GpuLanguage GpuShaderDesc: :getLanguage () const

void GpuShaderDesc: : setFunctionName (const char* name)
Set the function name of the shader program

const char* GpuShaderDesc: :getFunctionName () const
void GpuShaderDesc: : setLut 3DEdgeLen (int len)
int GpuShaderDesc: :getLut3DEdgelen () const

const char* GpuShaderDesc: :getCacheID () const

Context

class Context

static ContextRcPtr Context : :Create ()

ContextRcPtr Context : :createEditableCopy () const

const char* Context : :getCacheID () const

void Context : : setSearchPath (const char* path)

const char* Context : :getSearchPath () const

void Context : : setWorkingDir (const char* dirname)

const char* Context : :getWorkingDir () const

void Context : : setStringVar (const char* name, const char* value)
const char* Context : : getStringVar (const char* name) const
int Context : :getNumStringVars () const

const char* Context : : getStringVarNameByIndex (intindex) const
void Context : :clearStringVars ()

void Context : : setEnvironmentMode (EnvironmentMode mode)
EnvironmentMode Context : :getEnvironmentMode () const

void Context : : loadEnvironment ()
Seed all string vars with the current environment.

3.5. Developer Guide

83



OpenColorlO Documentation, Release 1.1.1

const char* Context : : resolveStringVar (const char* val) const
Do a file lookup.

Evaluate the specified variable (as needed). Will not throw exceptions.

const char* Context : : resolveFileLocation (const char* filename) const
Do a file lookup.

Evaluate all variables (as needed). Also, walk the full search path until the file is found. If the filename cannot
be found, an exception will be thrown.

3.5.8 C++ Transforms

Typically only needed when creating and/or manipulating configurations

class Transform

std::ostream& operator<< (std::ostream&, const Transform&)

class AllocationTransform
Forward direction wraps the ‘expanded’ range into the specified, often compressed, range.

static AllocationTransformRcPtr AllocationTransform: :Create ()
TransformRcPtr AllocationTransform: :createEditableCopy () const
TransformDirection AllocationTransform: :getDirection () const
void AllocationTransform: : setDirection (TransformDirection dir)
Allocation AllocationTransform: :getAllocation () const

void AllocationTransform: :setAllocation (Allocation allocation)
intAllocationTransform: :getNumVars () const

void AllocationTransform: :getVars (float* vars) const

void AllocationTransform: : setVars (int numvars, const float* vars)

std::ostream& operator<< (std::ostream&, const AllocationTransform& )

class CDLTransform
An implementation of the ASC CDL Transfer Functions and Interchange - Syntax (Based on the version 1.2
document)

Note: the clamping portion of the CDL is only applied if a non-identity power is specified.

static CDLTransformRcPtr CDLTransform: :Create ()

static CDLTransformRcPtr CDLTransform: : CreateFromFile (const char* src, const char* cccid)
Load the CDL from the src .cc or .ccc file. If a .ccc is used, the cccid must also be specified src must be an
absolute path reference, no relative directory or envvar resolution is performed.

TransformRcPtr CDLTransform: : createEditableCopy () const

TransformDirection CDLTransform: :getDirection () const

84 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

void CDLTransform: : setDirection (TransformDirection dir)

bool CDLTransform: :equals (const ConstCDLTransformRcPtr& other) const
const char* CDLTransform: :getXML () const

void CDLTransform: : setXML (const char® xml)

ASC_SOP

Slope, offset, power:

N

out = clamp( (in * slope) + offset ) power

void CDLTransform: : setSlope (const float* rgb)
void CDLTransform: :getSlope (float* rgh) const
void CDLTransform: : setOffset (const float* rgh)
void CDLTransform: :getOffset (float* rgh) const
void CDLTransform: : setPower (const float* rgb)
void CDLTransform: :getPower (float* rgh) const
void CDLTransform: : setSOP (const float* vec9)

void CDLTransform: : getSOP (float* vec9) const
ASC_SAT

void CDLTransform: : setSat (float sat)

float CDLTransform: :getSat () const

void CDLTransform: : getSatLumaCoefs (float* rgh) const
These are hard-coded, by spec, to r709

Metadata

These do not affect the image processing, but are often useful for pipeline purposes and are included in the serialization.

void CDLTransform: : setID (const char* id)
Unique Identifier for this correction

const char* CDLTransform: :getID() const

void CDLTransform: : setDescription (const char* desc)
Textual description of color correction (stored on the SOP)

const char* CDLTransform: :getDescription () const

std::ostream& operator<< (std::ostream&, const CDLTransform&)

class ColorSpaceTransform

static ColorSpaceTransformRcPtr ColorSpaceTransform: :Create ()
TransformRcPtr ColorSpaceTransform: : createEditableCopy () const
TransformDirection ColorSpaceTransform: :getDirection () const
void ColorSpaceTransform: : setDirection (TransformDirection dir)

const char* ColorSpaceTransform: :getSrc() const

3.5. Developer Guide 85



OpenColorlO Documentation, Release 1.1.1

void ColorSpaceTransform: : setSrc (const char* src)
const char* ColorSpaceTransform: :getDst () const
void ColorSpaceTransform: : setDst (const char* dst)

std::ostream& operator<< (std::ostream&, const ColorSpaceTransform&)

class DisplayTransform

static DisplayTransformRcPtr DisplayTransform: :Create ()
TransformRcPtr DisplayTransform: : createEditableCopy () const
TransformDirection DisplayTransform: :getDirection () const
void DisplayTransform: : setDirection (TransformDirection dir)

void DisplayTransform: : setInputColorSpaceName (const char* name)
Step 0. Specify the incoming color space

const char* DisplayTransform: :getInputColorSpaceName () const

void DisplayTransform: : setLinearCC (const ConstTransformRcPtr& cc)
Step 1: Apply a Color Correction, in ROLE_SCENE_LINEAR

ConstTransformRcPtr DisplayTransform: :getLinearCC () const

void DisplayTransform: : setColorTimingCC (const ConstTransformRcPtr& cc)
Step 2: Apply a color correction, in ROLE_COLOR_TIMING

ConstTransformRcPtr DisplayTransform: :getColorTimingCC () const

void DisplayTransform: : setChannelView (const ConstTransformRcPtr& transform)
Step 3: Apply the Channel Viewing Swizzle (mtx)

ConstTransformRcPtr DisplayTransform: :getChannelView () const

void DisplayTransform: : setDisplay (const char* display)
Step 4: Apply the output display transform This is controlled by the specification of (display, view)

const char* DisplayTransform: :getDisplay () const

void DisplayTransform: : setView (const char* view)
Specify which view transform to use

const char* DisplayTransform: :getView () const

void DisplayTransform: : setDisplayCC (const ConstTransformRcPtr& cc)
Step 5: Apply a post display transform color correction

ConstTransformRcPtr DisplayTransform: :getDisplayCC () const

void DisplayTransform: : setLooksOverride (const char* looks)
A user can optionally override the looks that are, by default, used with the expected display / view combination.
A common use case for this functionality is in an image viewing app, where per-shot looks are supported. If for
some reason a per-shot look is not defined for the current Context, the Config::getProcessor fcn will not succeed
by default. Thus, with this mechanism the viewing app could override to looks = “’, and this will allow image
display to continue (though hopefully) the interface would reflect this fallback option.)

Looks is a potentially comma (or colon) delimited list of lookNames, Where +/- prefixes are optionally allowed
to denote forward/inverse look specification. (And forward is assumed in the absense of either)

const char* DisplayTransform: :getLooksOverride () const

86 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

void DisplayTransform: : setLooksOverrideEnabled (bool enabled)
Specifiy whether the lookOverride should be used, or not. This is a speparate flag, as it’s often useful to override
“looks” to an empty string

bool DisplayTransform: :getLooksOverrideEnabled () const

std::ostream& operator<< (std::ostream&, const DisplayTransform&)

class ExponentTransform
Represents exponent transform: pow( clamp(color), value)

If the exponent is 1.0, this will not clamp. Otherwise, the input color will be clamped between [0.0, inf]
static ExponentTransformRcPtr Exponent Transform: :Create ()
TransformRcPtr ExponentTransform: : createEditableCopy () const
TransformDirection ExponentTransform: :getDirection () const
void ExponentTransform: : setDirection (TransformDirection dir)
void ExponentTransform: : setValue (const float* vec4)
void ExponentTransform: : getValue (float* vec4) const

std::ostream& operator<< (std::ostream&, const ExponentTransform&)

class FileTransform

static FileTransformRcPtr FileTransform: :Create ()
TransformRcPtr FileTransform: : createEditableCopy () const
TransformDirection FileTransform: :getDirection () const
void FileTransform: : setDirection (TransformDirection dir)
const char* FileTransform: :getSrc () const

void FileTransform: : setSrc (const char* src)

const char* FileTransform: :getCCCId () const

void FileTransform: : setCCCId (const char* id)

Interpolation FileTransform: :getInterpolation () const
void FileTransform: : setInterpolation (Interpolation interp)

staticint FileTransform: : getNumFormats ()
get the number of lut readers

static const char* FileTransform: : getFormatNameByIndex (int index)
get the lut readers at index, return empty string if an invalid index is specified

static const char* FileTransform: : getFormatExtensionByIndex (int index)
get the lut reader extension at index, return empty string if an invalid index is specified

std::ostream& operator<< (std::ostream&, const FileTransform&)

class GroupTransform

static GroupTransformRcPtr GroupTransform: :Create ()

3.5. Developer Guide 87



OpenColorlO Documentation, Release 1.1.1

TransformRcPtr GroupTransform: : createEditableCopy () const
TransformDirection GroupTransform: :getDirection () const

void GroupTransform: : setDirection (TransformDirection dir)
ConstTransformRcPtr GroupTransform: :getTransform (int index) const
int GroupTransform: :size () const

void GroupTransform: :push_back (const ConstTransformRcPtr& transform)
void GroupTransform: :clear ()

bool GroupTransform: :empty () const

std::ostream& operator<< (std::ostream&, const GroupTransform&)

class LogTransform
Represents log transform: log(color, base)

*The input will be clamped for negative numbers.
eDefault base is 2.0
*Only the rgb channels are affected
static LogTransformRcPtr LogTransform: :Create ()
TransformRcPtr LogTransform: : createEditableCopy () const
TransformDirection LogTransform: :getDirection () const
void LogTransform: : setDirection (TransformDirection dir)
void LogTransform: : setBase (float val)
float LogTransform: :getBase () const

std::ostream& operator<< (std::ostream&, const LogTransform&)

class LookTransform

static LookTransformRcPtr LookTransform: :Create ()
TransformRcPtr LookTransform: : createEditableCopy () const
TransformDirection LookTransform: :getDirection () const
void LookTransform: : setDirection (TransformDirection dir)

const char* LookTransform: :getSrc () const

void LookTransform: : setSrc (const char* src)

const char* LookTransform: :getDst () const

void LookTransform: : setDst (const char* dst)

void LookTransform: : setLooks (const char* looks)
Specify looks to apply. Looks is a potentially comma (or colon) delimited list of look names, Where +/- prefixes
are optionally allowed to denote forward/inverse look specification. (And forward is assumed in the absense of
either)

const char* LookTransform: :getLooks () const

88 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

std::ostream& operator<< (std::ostream&, const LookTransformd&)

class MatrixTransform
Represents an MX+B Matrix transform

static MatrixTransformRcPtr MatrixTransform: :Create ()
TransformRcPtr MatrixTransform: : createEditableCopy () const
TransformDirection MatrixTransform: :getDirection () const

void MatrixTransform: :setDirection (TransformDirection dir)

bool MatrixTransform: :equals (const MatrixTransform& other) const
void MatrixTransform: : setValue (const float* m44, const float* offset4)
void MatrixTransform: : getValue (float* m44, float* offset4) const
void MatrixTransform: : setMatrix (const float* m44)

void MatrixTransform: :getMatrix (float* m44) const

void MatrixTransform: : setOffset (const float* offset4)

void MatrixTransform: :getOffset (float* offsetd) const
Convenience functions

to get the mtx and offset corresponding to higher-level concepts

Note: These can throw an exception if for any component oldmin == oldmax. (divide by 0)

static void MatrixTransform: :Fit (float* m44, float* offset4, const float* oldmin4, const float* oldmax4,
const float* newmin4, const float* newmax4)

static void MatrixTransform: : Identity (float* m44, float* offset4)
static void MatrixTransform: : Sat (float* m44, float* offset4, float sat, const float* lumaCoef3)
static void MatrixTransform: : Scale (float* m44, float* offset4, const float* scale4)

static void MatrixTransform: : View (float* m44, float* offset4, int* channelHot4, const float* luma-
Coef3)

std::ostream& operator<< (std::ostream&, const MatrixTransform& )

class TruelightTransform
Truelight transform using its API

static TruelightTransformRcPtr TruelightTransform: :Create ()
TransformRcPtr TruelightTransform: :createEditableCopy () const
TransformDirection TruelightTransform: :getDirection () const
void TruelightTransform: : setDirection (TransformDirection dir)

void TruelightTransform: : setConfigRoot (const char* configroot)

const char* TruelightTransform: :getConfigRoot () const

void TruelightTransform: : setProfile (const char* profile)

const char* TruelightTransform: :getProfile () const

3.5. Developer Guide 89



OpenColorlO Documentation, Release 1.1.1

void TruelightTransform: : setCamera (const char* camera)

const char* TruelightTransform: :getCamera () const

void TruelightTransform: : setInputDisplay (const char* display)
const char* TruelightTransform: :getInputDisplay () const
void TruelightTransform: : setRecorder (const char* recorder)
const char* TruelightTransform: :getRecorder () const

void TruelightTransform: : setPrint (const char* print)

const char* TruelightTransform: :getPrint () const

void TruelightTransform: : setLamp (const char* lamp)

const char* TruelightTransform: :getLamp () const

void TruelightTransform: : setOutputCamera (const char* camera)
const char* TruelightTransform: :getOutputCamera () const
void TruelightTransform: : setDisplay (const char* display)

const char* TruelightTransform: :getDisplay () const

void TruelightTransform: : setCubelInput (const char* type)

const char* TruelightTransform: :getCubelInput () const

std::ostream& operator<< (std::ostream&, const TruelightTransform&)

3.5.9 C++ Types

Core

type ConstConfigRcPtr

type ConfigRcPtr

type ConstColorSpaceRcPtr
type ColorSpaceRcPtr

type ConstLookRcPtr

type LookRcPtr

type ConstContextRcPtr

type ContextRcPtr

type ConstProcessorRcPtr
type ProcessorRcPtr

type ConstProcessorMetadataRcPtr
type ProcessorMetadataRcPtr
type ConstBakerRcPtr

type BakerRcPtr

920 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Transforms

type ConstTransformRcPtr

type TransformRcPtr

type ConstAllocationTransformRcPtr
type AllocationTransformRcPtr

type ConstCDLTransformRcPtr

type CDLTransformRcPtr

type ConstColorSpaceTransformRcPtr
type ColorSpaceTransformRcPtr

type ConstDisplayTransformRcPtr
type DisplayTransformRcPtr

type ConstExponentTransformRcPtr
type ExponentTransformRcPtr

type ConstFileTransformRcPtr

type FileTransformRcPtr

type ConstGroupTransformRcPtr

type GroupTransformRcPtr

type ConstLogTransformRcPtr

type LogTransformRcPtr

type ConstLookTransformRcPtr

type LookTransformRcPtr

type ConstMatrixTransformRcPtr
type MatrixTransformRcPtr

type ConstTruelightTransformRcPtr
type TruelightTransformRcPtr

Enums

type ColorSpaceDirection
type TransformDirection

type Interpolation
Specify the interpolation type to use If the specified interpolation type is not supported in the requested context
(for example, using tetrahedral interpolationon 1D luts) an exception will be throw.

INTERP_BEST will choose the best interpolation type for the requested context:
Lut1D INTERP_BEST: LINEAR Lut3D INTERP_BEST: LINEAR

Note: INTERP_BEST is subject to change in minor releases, so if you care about locking off on a specific
interpolation type, we’d recommend directly specifying it.

type BitDepth

3.5. Developer Guide 91



OpenColorlO Documentation, Release 1.1.1

type Allocation

type GpuLanguage
Used when there is a choice of hardware shader language.

type EnvironmentMode

Conversion

const char* BoolToString (bool val)

bool BoolFromString (const char* s)

const char* LoggingLevelToString (LoggingLevel level)

Logginglevel LoggingLevelFromString (const char* s)

const char* TransformDirectionToString (TransformDirection dir)
TransformDirection TransformDirectionFromString (const char* s)
TransformDirection GetInverseTransformDirection (TransformDirection dir)
TransformDirection CombineTransformDirections (TransformDirection d/, TransformDirection d2)
const char* ColorSpaceDirectionToString (ColorSpaceDirection dir)
ColorSpaceDirection ColorSpaceDirectionFromString (const char* s)
const char* BitDepthToString (BitDepth bitDepth)

BitDepth BitDepthFromString (const char® s)

bool BitDepthIsFloat (BitDepth bitDepth)

int BitDepthToInt (BitDepth bitDepth)

const char* AllocationToString (Allocation allocation)

Allocation AllocationFromString (const char* s)

const char* InterpolationToString (Interpolation interp)

Interpolation InterpolationFromString (const char* s)

const char* GpuLanguageToString (Gpulanguage language)
GpuLanguage GpuLanguageFromString (const char* s)

const char* EnvironmentModeToString (EnvironmentMode mode)

EnvironmentMode EnvironmentModeFromString (const char® s)

Roles

ColorSpace Roles are used so that plugins, in addition to this API can have abstract ways of asking for common
colorspaces, without referring to them by hardcoded names.

Internal:

GetGPUDisplayTransform - (ROLE_SCENE_LINEAR (fstop exposure))
(ROLE_COLOR_TIMING (ASCColorCorrection))

External Plugins (currently known):

92 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Colorpicker UIs — (ROLE_COLOR_PICKING)
Compositor LogConvert - (ROLE_SCENE_LINEAR, ROLE_COMPOSITING_LOG)

const char* ROLE_DEFAULT
“default”

const char* ROLE_ REFERENCE
“reference”

const char* ROLE_DATA
“data”

const char* ROLE_ COLOR_PICKING
“color_picking”

const char* ROLE_SCENE_LINEAR
“scene_linear”

const char* ROLE_COMPOSITING_LOG
“compositing_log”

const char* ROLE_ COLOR_TIMING
“color_timing”

const char* ROLE_TEXTURE_PAINT
This role defines the transform for painting textures. In some workflows this is just a inverse display gamma
with some limits

const char* ROLE_MATTE_PAINT
This role defines the transform for matte painting. In some workflows this is a 1D HDR to LDR allocation. It is
normally combined with another display transform in the host app for preview.

Python API documentation:

3.5.10 Python API

Description

A color configuration (PyOpenColorIO.Config) defines all the color spaces to be available at runtime.

(PyOpenColorIO.Config) is the main object for interacting with this library. It encapsulates
all the information necessary to use customized PyOpenColorIO.ColorSpaceTransform and
PyOpenColorIO.DisplayTransform operations.

See the User Guide for more information on selecting, creating, and working with custom color configurations.

For applications interested in using only one color configuration at a time (this is the vast majority of apps), their API
would traditionally get the global configuration and use that, as opposed to creating a new one. This simplifies the use
case for plugins and bindings, as it alleviates the need to pass around configuration handles.

An example of an application where this would not be sufficient would be a multi-threaded image proxy server (dae-
mon) that wants to handle multiple show configurations concurrently in a single process. This app would need to keep
multiple configurations alive, and manage them appropriately.

Roughly speaking, a novice user should select a default configuration that most closely approximates the use case
(animation, visual effects, etc.), and set the OCTO environment variable to point at the root of that configuration.

Note: Initialization using environment variables is typically preferable in a multi-app ecosystem, as it allows all
applications to be consistently configured.

3.5. Developer Guide 93



OpenColorlO Documentation, Release 1.1.1

Note: Paths to LUTs can be relative. The search paths are defined in PyOpenColorIO.Config.

See Usage Examples

Examples of Use

import PyOpenColorIO as OCIO

# Load an existing configuration from the environment.

# The resulting configuration is read-only. If SOCIO is set, it will use that.
# Otherwise it will use an internal default.

config = OCIO.GetCurrentConfig()

# What color spaces exist?
colorSpaceNames = [ cs.getName () for cs in config.getColorSpaces() ]

# Given a string, can we parse a color space name from it?
inputString = ‘myname_linear.exr’
colorSpaceName = config.parseColorSpaceFromString (inputString)
if colorSpaceName:

print 'Found color space’, colorSpaceName
else:

print ’Could not get color space from string’, inputString

# What is the name of scene-linear in the configuration?
colorSpace = config.getColorSpace (OCIO.Constants.ROLE_SCENE_LINEAR)
if colorSpace:
print colorSpace.getName ()
else:
print 'The role of scene-linear is not defined in the configuration’

# For examples of how to actually perform the color transform math,
# see ’Python: Processor’ docs.

# Create a new, empty, editable configuration
config = OCIO.Config()

# Create a new color space, and add it
cs = OCIO.ColorSpace(...)
# (See ColorSpace for details)

config.addColorSpace (cs)

# For additional examples of config manipulation, see
# https://github.com/imageworks/OpenColorIO-Configs/blob/master/nuke-default/make.py

Exceptions
Global
Config

ColorSpace

94 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Look

Processor

Context

3.5.11 Python Transforms
Transform
AllocationTransform

import PyOpenColorIO as OCIO
transform = OCIO.AllocationTransform()
transform.setAllocation (OCIO.Constants.ALLOCATION_LG2)

CDLTransform

import PyOpenColorIO as OCIO

cdl = OCIO.CDLTransform()

# Set the slope, offset, power, and saturation for each channel.
cdl.setSOP(Ll, v v v v + o+ o+ 1)

cdl.setSat ([, , 1)

cdl.getSatLumaCoefs ()

ColorSpaceTransform

This class is meant so that ColorSpace conversions can be reused, referencing ColorSpaces that already exist.

Note: Careless use of this may create infinite loops, so avoid referencing the colorspace you’re in.

import PyOpenColorIO as OCIO
transform = OCIO.ColorSpaceTransform()

DisplayTransform

import PyOpenColorIO as OCIO
transform = OCIO.DisplayTransform()

ExponentTransform

import PyOpenColorIO as OCIO
transform = OCIO.ExponentTransform()

3.5. Developer Guide 95



OpenColorlO Documentation, Release 1.1.1

FileTransform
GroupTransform
LogTransform

import PyOpenColorIO as OCIO

PyOpenColorIO.LogTransformisused to define a log transform. The direction of the transform and its numer-
ical base can be specified.

LookTransform

MatrixTransform
3.5.12 Python Types

Constants

Internal Architecture:

3.5.13 Internal Architecture Overview

External API

Configs

At the highest level, we have OCIO::Configs. This represents the entirety of the current color “universe”. Configs are
serialized as .ocio files, read at runtime, and are often used in a ‘read-only’ context.

Config are loaded at runtime to allow for customized color handling in a show- dependent manner.
Example Configs:

* ACES (Academy’s standard color workflow)

¢ spi-vfx (Used on some Imageworks VFX shows such as spiderman, etc).

¢ and others

ColorSpaces

The meat of an OCIO::Config is a list of named ColorSpaces. ColorSpace often correspond to input image states,
output image states, or image states used for internal processing.

Example ColorSpaces (from ACES configuration):

* aces (HDR, scene-linear)

adx10 (log-like density encoding space)

slogf35 (sony F35 slog camera encoding)

rrt_srgb (baked in display transform, suitable for srgb display)
* rrt_p3dci (baked in display transform, suitable for dcip3 display)

96 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Transforms

9, &6

ColorSpaces contain an ordered list of transforms, which define the conversion to and from the Config’s “reference”
space.

Transforms are the atomic units available to the designer in order to specify a color conversion.
Examples of OCIO::Transforms are:

¢ File-based transforms (1d lut, 3d lut, mtx... anything, really.)

* Math functions (gamma, log, mtx)

* The ‘meta’ GroupTransform, which contains itself an ordered lists of transforms

¢ The ‘meta’ LookTransform, which contains an ordered lists of transforms

For example, the adx10 ColorSpace (in one particular ACES configuration) -Transform FROM adx, to our reference
ColorSpace:

1. Apply FileTransform adx_adx10_to_cdd.spimtx
2. Apply FileTransform adx_cdd_to_cid.spimtx

3. Apply FileTransform adx_cid_to_rle.spild

4. Apply LogTransform base 10 (inverse)

5. Apply FileTransform adx_exp_to_aces.spimtx

If we have an image in the reference ColorSpace (unnamed), we can convert TO adx by applying each in the inverse
direction:

1. Apply FileTransform adx_exp_to_aces.spimtx (inverse)
2. Apply LogTransform base 10 (forward)

3. Apply FileTransform adx_cid_to_rle.spild (inverse)

4. Apply FileTransform adx_cdd_to_cid.spimtx (inverse)

5. Apply FileTransform adx_adx10_to_cdd.spimtx (inverse)

Note that this isn’t possible in all cases (what if a lut or matrix is not invertible?), but conceptually it’s a simple way to
think about the design.

Summary

Configs and ColorSpaces are just a bookkeeping device used to get and ordered lists of Transforms corresponding to
image color transformation.

Transforms are visible to the person AUTHORING the OCIO config, but are NOT visible to the client applications.
Client apps need only concern themselves with Configs and Processors.

OCIO::Processors

A processor corresponds to a ‘baked’ color transformation. You specify two arguments when querying a processor:
the ColorSpace you are coming from, and the ColorSpace you are going to.

Once you have the processor, you can apply the color transformation using the “apply” function. For the CPU veseion,
first wrap your image in an ImageDesc class, and then call apply to process in place.

Example:

3.5. Developer Guide 97



OpenColorlO Documentation, Release 1.1.1

#include <OpenColorIO/OpenColorIO.h>
namespace OCIO = OCIO_NAMESPACE;

try

{
// Get the global OpenColorIO config
// This will auto-initialize (using SOCIO) on first use
OCIO: :ConstConfigRcPtr config = OCIO: :GetCurrentConfig();

// Get the processor corresponding to this transform.

// These strings, in this example, are specific to the above

// example. ColorSpace names should NEVER be hard-coded into client

// software, but should be dynamically queried at runtime from the library
OCIO: :ConstProcessorRcPtr processor = config->getProcessor ("adx1l0", "aces");

// Wrap the image in a light-weight ImageDescription
OCIO: :PackedImageDesc img (imageData, w, h, 4);

// Apply the color transformation (in place)
processor->apply (img) ;

}

catch (OCIO: :Exception & exception)

{

std::cerr << "OpenColorIO Error: " << exception.what () << std::endl;

}

The GPU code path is similar. You get the processor from the config, and then query the shaderText and the lut3d.
The client loads these to the GPU themselves, and then makes the appropriate calls to the newly defined function.

See src/apps/ociodisplay for an example.

Internal API

The Op Abstraction

It is a useful abstraction, both for code-reuse and optimization, to not relying on the transforms to do pixel processing
themselves.

Consider that the FileTransform represents a wide-range of image processing operations (basically all of em), many
of which are really complex. For example, the houdini lut format in a single file may contain a log convert, a 1d lut,
and then a 3d lut; all of which need to be applied in a row! If we don’t want the FileTransform to know how to process
all possible pixel operations, it’s much simpler to make light-weight processing operations, which the transforms can
create to do the dirty work as needed.

All image processing operations (ops) are a class that present the same interface, and it’s rather simple:

virtual void apply (float* rgbaBuffer, long numPixels)

Basically, given a packed float array with the specified number of pixels, process em.
Examples of ops include Lut1DOp, Lut3DOp, MtxOffsetOp, LogOp, etc.

Thus, the job of a transform becomes much simpler and they’re only responsible for converting themselves to a list
of ops. A simple FileTransform that only has a single 1D Iut internally may just generate a single Lut1DOp, but a
FileTransform that references a more complex format (such as the houdini lut case referenced above) may generate a
few ops:

98 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

void FileFormatHDL: :BuildFileOps (OpRcPtrVec & ops,
const Configs& /*config#/,
const ConstContextRcPtr & /xcontext=/,
CachedFileRcPtr untypedCachedFile,
const FileTransform& fileTransform,
TransformDirection dir) const ({

// Code omitted which loads the lut file into the file cache...

CreateLutl1lDOp (ops, cachedFile->1utlD,
fileTransform.getInterpolation(), dir);

CreateLut3DOp (ops, cachedFile->1ut3D,
fileTransform.getInterpolation(), dir);

See (src/core/+0ps . h) for the available ops.

Note that while compositors often have complex, branching trees of image processing operations, we just have a linear
list of ops, lending itself very well to optimization.

Before the ops are run, they are optimized. (Collapsed with appropriate neighbors, etc).

An Example

Let us consider the internal steps when getProcessor() is called to convert from ColorSpace ‘adx10’ to ColorSpace
‘aces’:

* The first step is to turn this ColorSpace conversion into an ordered list of transforms.

We do this by creating a single of the conversions from ‘adx10’ to reference, and then adding the transforms required
to go from reference to ‘aces’. * The Transform list is then converted into a list of ops. It is during this stage luts, are
loaded, etc.

CPU CODE PATH

The master list of ops is then optimized, and stored internally in the processor.

FinalizeOpVec (m_cpuOps) ;

During Processor::apply(...), a subunit of pixels in the image are formatted into a sequential rgba block. (Block size is
optimized for computational (SSE) simplicity and performance, and is typically similar in size to an image scanline)

float * rgbaBuffer = 0O;
long numPixels = 0;
while (true) {
scanlineHelper.prepRGBAScanline (&¢rgbaBuffer, &numPixels);

Then for each op, op->apply is called in-place.

for (OpRcPtrVec::size_type i=0, size = m_cpuOps.size(); i<size; ++1i)
{

m_cpuOps[i] —>apply (rgbaBuffer, numPixels);
}

After all ops have been applied, the results are copied back to the source

scanlineHelper.finishRGBAScanline () ;

3.5. Developer Guide 99



OpenColorlO Documentation, Release 1.1.1

GPU CODE PATH

1. The master list of ops is partitioned into 3 ordered lists:

* As many ops as possible from the BEGINNING of the op-list that can be done analytically in shader text. (called
gpu-preops)

* As many ops as possible from the END of the op-list that can be done analytically in shader text. (called
gpu-postops)

* The left-over ops in the middle that cannot support shader text, and thus will be baked into a 3dlut. (called
gpu-lattice)

#. Between the first an the second lists (gpu-preops, and gpu-latticeops), we analyze the op-stream metadata and
determine the appropriate allocation to use. (to minimize clamping, quantization, etc). This is accounted for here by
interserting a forward allocation to the end of the pre-ops, and the inverse allocation to the start of the lattice ops.

See https://github.com/imageworks/OpenColorlO/blob/master/src/core/NoOps.cpp#L.183

#. The 3 lists of ops are then optimized individually, and stored on the processor. The Lut3d is computed by applying
the gpu-lattice ops, on the CPU, to a lut3d image.

The shader text is computed by calculating the shader for the gpu-preops, adding a sampling function of the 3d lut,
and then calculating the shader for the gpu post ops.

3.6 Compatible Software

The following sofware all supports OpenColorIO (to varying degrees).

If you are interested in getting OCIO support for an application not listed here, please contact the ocio-dev mailing
list.

If you are a developer and would like assistance integration OCIO into your application, please contant ocio-dev as
well.

3.6.1 After Effects

Compositor - Adobe
An OpenColorlO plugin is available for use in After Effects.
See src/aftereffects if you are interested in building your own OCIO plugins.

Pre-built binaries are also available for download, courtesy of fnordware.

3.6.2 Blender

Open Source 3D Application

In version 2.64, Blender has integrated OCIO as part it’s redesigned color management system.

3.6.3 Kirita

2D Paint - Open Source

Krita now support OpenColorlIO for image viewing, allowing for the accurate painting of float32/OpenEXR imagery.

100 Chapter 3. Downloading and Building the Code


https://github.com/imageworks/OpenColorIO/blob/master/src/core/NoOps.cpp#L183
http://www.adobe.com/products/aftereffects.html
http://github.com/imageworks/OpenColorIO/tree/master/src/aftereffects
http://www.fnordware.com/OpenColorIO
http://www.fnordware.com
http://www.blender.org/
http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64
http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management
http://www.krita.org/

OpenColorlO Documentation, Release 1.1.1

See krita.org for details.

3.6.4 Silhouette

Roto, Paint, Keying - SilhouetteFX

OCIO is natively integrated in 4.5+ Full support is provide for both image import/export, as well as image display.

3.6.5 Nuke

Compositor - The Foundry
Nuke 6.3v7+ ships with native support for OpenColorIO. The OCIO configuration is selectable in the user preferences.

OCIO Nodes: OCIOCDLTransform, OCIOColorSpace, OCIODisplay, OCIOFileTransform, OCIOLookConvert,
OCIOLogConvert

The OCIODisplay node is suitable for use in the Viewer as an input process (IP), and a register function is provides to
add viewer options for each display upon launch.

The OCIO config “nuke-default” is provided, which matches the built-in Nuke color processing. This profile is useful
for those who want to mirror the native nuke color processing in other applications. (The underlying equations are
also provided as python code in the config as well).

A video demonstration of the Nuke OCIO workflow.

3.6.6 Mari

3D Paint - The Foundry
Mari 1.4v1+ ships with native support for OpenColorlO in their display toolbar.

A video demonstration of the Mari OCIO workflow.

3.6.7 Katana

CG Pipeline / Lighting Tool - The Foundry
Color management in Katana (all versions) natively relies on OCIO.

2D Nodes: OCIODisplay, OCIOColorSpace, OCIOCDLTransform Monitor Panel: Full OCIO Support

3.6.8 Hiero

Conform & Review - The Foundry

Hiero 1.0 will ship with native support for OCIO in the display and the equivalent of Nuke’s OCIOColorSpace in the
Read nodes.

It comes with “nuke-default” OCIO config by default, so the Hiero viewer matches when sending files to Nuke for
rendering.

3.6. Compatible Software 101


http://www.krita.org/item/113-krita-starts-supporting-opencolorio
http://www.silhouettefx.com/silhouette
http://www.silhouettefx.com/silhouette/silhouette-4.5-WhatsNew.pdf
http://www.thefoundry.co.uk/products/nuke
http://vimeo.com/38773736
http://www.thefoundry.co.uk/products/mari
http://vimeo.com/32909648
http://www.thefoundry.co.uk/products/katana
http://www.thefoundry.co.uk/products/hiero

OpenColorlO Documentation, Release 1.1.1

3.6.9 Photoshop

OpenColorIO display luts can be exported as ICC profiles for use in photoshop. The core idea is to cre-
ate an .icc profile, with a valid description, and then to save it to the proper OS icc directory. (On OSX,
~/Library/ColorSync/Profiles/). Upon a Photoshop relaunch, Edit->Assign Profile, and then select your
new OCIO lut.

See the the OCIO user guide for details on baking ICC profiles for Photoshop

3.6.10 OpenimagelO

Open Source Image Library / Renderer Texture Engine

Auvailable in the current code trunk. Integration is with makecolortx (allowing for color space conversion during
mipmap generation), and also through the public header src/include/color.h .

Remaining integration tasks include color conversion at runtime .

3.6.11 C++

The core OpenColorlO API is avaiable for use in C++. See the export directory for the C++ API headers. Minimal
code examples are also available in the source code distribution. Of particular note are src/apps/ocioconvert/ and
src/apps/ociodisplay/

Also see the Developer Guide

3.6.12 Python

The OpenColorIO API is available for use in python. See the “pyglue” directory in the codebase.

See the devleoper guide for usage examples and API documentation on the PYthon bindings

3.6.13 Vegas Pro

Video editing - Sony

Vegas Pro 12 uses OpenColorlO, supporting workflows such as S-log footage via the ACES colorspace.

3.6.14 Apps w/icc or luts

flame (.3dl), lustre (.3dl), cinespace (.csp), houdini (.lut), iridas_itx (.itx) photoshop (.icc)
Export capabilities through ociobakelut:

ociobakelut -- create a new LUT or icc profile from an OCIO config or lut file(s)

usage: ociobakelut [options] <OUTPUTFILE.LUT>

example: ociobakelut —--lut filmlut.3dl —--lut calibration.3dl —--format flame display.3dl
example: ociobakelut --lut look.3dl --offset 0.01 -0.02 0.03 --lut display.3dl --format flame disg
example: ociobakelut —--inputspace 1gl0 —--outputspace srgb8 —--format icc ~/Library/ColorSync/Profi.

$

$

$

$

$ example: ociobakelut —--inputspace 1gl0 —--outputspace srgb8 —--format flame 1lg_to_srgb.3dl

$

$

$

$ example: ociobakelut —--lut filmlut.3dl --lut calibration.3dl --format icc ~/Library/ColorSync/Pro:
$

102 Chapter 3. Downloading and Building the Code


http://openimageio.org
http://github.com/OpenImageIO/oiio/blob/master/src/include/color.h
http://github.com/OpenImageIO/oiio/issues/193
http://github.com/imageworks/OpenColorIO/tree/master/export/OpenColorIO
https://github.com/imageworks/OpenColorIO/tree/master/src/apps/ocioconvert
https://github.com/imageworks/OpenColorIO/tree/master/src/apps/ociodisplay
http://www.sonycreativesoftware.com/vegaspro

OpenColorlO Documentation, Release 1.1.1

Using Existing OCIO Configurations

—-—inputspace %s Input OCIO ColorSpace (or Role)

—-—outputspace %s Output OCIO ColorSpace (or Role)

——shaperspace %s the OCIO ColorSpace or Role, for the shaper
——iconfig %s Input .ocio configuration file (default: $OCIO)

Config-Free LUT Baking
(all options can be specified multiple times, each is applied in order)

—-lut %s Specify a LUT (forward direction)
——invlut %s Specify a LUT (inverse direction)
—-—-slope %f %f Sf slope

—-—offset %f %$f Sf offset (float)

——offsetl0 %f %$f %f offset (10-bit)

——power $f %f £ power

—-—-sat %f saturation (ASC-CDL luma coefficients)

Baking Options

——format %s the lut format to bake: flame (.3dl), lustre (.3dl),
cinespace (.csp), houdini (.lut), iridas_itx (.itx), icc (.icc)
——-shapersize %d size of the shaper (default: format specific)
——cubesize %d size of the cube (default: format specific)
——-stdout Write to stdout (rather than file)
-—v Verbose
——help Print help message

ICC Options

B2 2NE (2R Vo T (o TR Vo S (o S0 00 S 00 SN0 TR U5 S (o S U S O Sl V0 S 05 S V0 S U SN /5 TR U S /5 SR V0 SR O S 0 TR 0o S () TR Vo SHE Vo SR V0 SRS O B 00 WE 002

—--whitepoint %d whitepoint for the profile (default: 6505)

—-—displayicc %s an icc profile which matches the OCIO profiles target display
—-—description %s a meaningful description, this will show up in UI like photoshop
——copyright %s a copyright field

See this ocio-dev thread for additional usage discussions.

When exporting an ICC Profile, you will be asked to specify your monitor’s profile (it will be selected for you by
default). This is because ICC Profile are not LUTs per se. An ICC Profile describes a color space and then needs
a destination profile to calculate the transformation. So if you have an operation working and looking good on the
monitor you’re using (and maybe its profile has been properly measured using a spectrophotometer), then choose your
display. If the transform was approved on a different monitor, then maybe you should choose its profile instead.

3.6.15 RV

Playback Tool - Tweak Software

RV has native OCIO support in version 4 onwards. For more details, see the OpenColorIO section of the RV User
Manual.

3.6.16 Java (Beta)

The OpenColorIO API is available for use in Java. See the jniglue directory in the codebase.

This integration is currently considered a work in progress, and should not be relied upon for critical production work.

3.6. Compatible Software 103


https://lists.aswf.io/g/ocio-dev/topic/30498585
http://www.tweaksoftware.com
http://www.tweaksoftware.com/static/documentation/rv/current/html/rv_manual.html#OpenColorIO
http://www.tweaksoftware.com/static/documentation/rv/current/html/rv_manual.html#OpenColorIO
http://github.com/imageworks/OpenColorIO/tree/master/src/jniglue

OpenColorlO Documentation, Release 1.1.1

3.6.17 Gaffer

Open Source VFX Platform

Gaffer is a node based application for use in CG and VFX production, with a particular focus on lighting and look
development.

3.6.18 Natron

‘Open Source Compositing Softare <http://natron.fr>’

3.6.19 CryEngine3 (Beta)

Game Engine - Crytek (Cinema Sandbox)

CryENGINE is a real-time game engine, targeting applications in the motion-picture market. While we don’t know
many details about the CryEngine OpenColorlO integration, we’re looking forward to learning more as information
becomes available.

3.7 FAQ

3.7.1 License?

New BSD.

You are welcome to include the OpenColorIO in commercial, or open source applications. See the License for further
details.

3.7.2 Terminology

* Transform - a function that alters RGB(A) data (e.g transform an image from scene linear to SRGB)
* Reference space - a space that connects colorspaces

* Colorspace - a meaningful space that can be transferred to and from the reference space

* Display - a virtual or physical display device (e.g an SRGB display device)

* View - a meaningful view of the reference space on a Display (e.g a film emulation view on an sSRGB display
device)

* Role - abstract colorspace naming (e.g specify the “Inh” colorspace as the scene_linear role, or the color-picker
UI uses color_picking role)

* Look - a color transform which applies a creative look (for example a per-shot netural grade to remove color-
casts from a sequence of film scans, or a DI look)

104 Chapter 3. Downloading and Building the Code


http://gafferhw.org
http://natron.fr
http://mycryengine.com/index.php?conid=59

OpenColorlO Documentation, Release 1.1.1

3.7.3 What LUT Formats are supported?

Ext | Details Notes

3dl | Autodesk Apps: Lustre, Flame, etc. Supports | Read + Write Support.
shaper LUT + 3D

ccc | ASC CDL ColorCorrectionCollection Full read support.

cc ASC CDL ColorCorrection Full read support.

csp | Cinespace (Rising Sun Research) LUT. Read + Write Support. Shaper is resampled into simple
Spline-based shaper LUT, with either 1D or 1D LUT with 2”16 samples.
3D LUT.

cub | Truelight format. Shaper Lut + 3D Full read support.

cube | Iridas format. Either 1D or 3D Lut. Full read support

hdl | Houdini. 1D Lut, 3D Iut, 1D shaper Lut Only ‘C’ type is supported. Need to add R G B A RGB

RGBA ALL. No support for Sampling tag. Header fields
must be in strict order.

look | IRIDAS .look Read baked 3D LUT embedded in file. No mask support.
mga/mPdndora 3D lut Full read support.
spild| 1D format. Imageworks native 1D lut Full read support.

format. HDR friendly, supports arbitrary
input and output domains

spi3d| 3D format. Imageworks native 3D lut format. | Full read support.
spimtx 3x3 matrix + color offset. Imageworks native | Full read support.
color matrix format
vf Inventor 3d lut. Read support for 3d Iut data and global_transform element

Note: Shaper LUT application in OCIO currently only supports linear interpolation. For very small shaper LUT sizes
this may not be sufficient. (CSP shaper luts excluded; they do use spline interpolation at load-time).

3.7.4 Can you query a color space by name (like “Rec709”) and get back XYZ coor-
dinates of its primaries and whitepoint?

Not currently.

OCIO is a color configuration ‘playback’ tool that tries to be as flexible as possible; color information such as this is
often only needed / relevant at configuration authoring time. Making primaries / whitepoint required would limit the
pipeline OCIO could service. In the strictest sense, we would consider OCIO to be a ‘baked’ representation of color
processes, similar to how Alembic files do not store animation rig data, but rather only the baked geometry.

Also, remember that not all colorspaces using in visual effects even have strongly defined color space definitions. For
example, scanned film negatives, when linearized with 1d transfer curves (the historical norm in vfx), do not have
defined primaries/white point. Each rgb value could of course individually be tied to a specific color, but if you were
to do a sweep of the pure ‘red channel’, for example, you’d find that it creates a curves in chromaticity space, not a
single point. (This is due to the 1d linearization not attempting to undo the subtractive processes that created the pixels
in the first place.

But many color spaces in OCIO do have very strongly defined white points/chromaticities. On the display side, for
example, we have very precise information on this.

Perhaps OCIO should include optional metadata to tag outputs? We are looking at this as as a OCIO 1.2 feature.

3.7.5 Can you convert XYZ <-> named color space RGB values?

OCIO includes a MatrixTransform, so the processing capability is there. But there is no convenience function to
compute this matrix for you. (We do include other Matrix convenience functions though, so it already has a place to

3.7. FAQ 105



OpenColorlO Documentation, Release 1.1.1

be added. See MatrixTransform in export/OpenColorTransforms.h)

There’s talk of extended OCIO 1.2 to have a plugin api where colorspaces could be dynamically added at runtime
(such as after reading exr chromaticity header metadata). This would necessitate adding such a feature.

3.7.6 What are the differences between Nuke’s Vectorfield and OCIOFileTransform?

(All tests done with Nuke 6.3)

Ext Details Notes

3dl Matched Results

cce n/a

cc n/a

csp Difference Gain error. Believe OCIO is correct, but need to verify.
cub Matched Results | Note: Nuke’s .cub exporter is broken (gain error)

cube Matched Results

hdl n/a

mga/m3d | n/a

spild n/a

spi3d n/a

spimtx n/a

vf Difference Gain error. Believe OCIO is correct, but need to verify.

All gain differences are due to a common ‘gotcha’ when interpolating 3d luts, related to internal index computation. If
you have a 32x32x32 3dlut, when sampling values from (0,1) do you internally scale by 31.0 or 32.0? This is typically
well-defined for each format, (in this case the answer is usually 31.0) but when incorrectly handled in an application,
you occationally see gain errors that differ by this amount. (In the case of a 32-sized 3dlut, 32/31 = ~3% error)

3.7.7 What do ColorSpace::setAllocation() and ColorSpace::setAllocationVars()
do?

These hints only come into play during GPU processing, and are used to determine proper colorspace allocation
handling for 3D LUTs. See this page How to Configure ColorSpace Allocation for further information.

3.8 Downloads

e Sample OCIO Configurations — .zip .tar.gz

» Reference Images v1.0v4 — .tgz

* Core Library v1.0.9 — .zip .tar.gz

* Core Library latest — .zip .tar.gz
Per-version updates: ChangelLog.

Build instructions: Building from source.

3.8.1 Contributor License Agreements

Please see the Imageworks Open Source website

106 Chapter 3. Downloading and Building the Code


http://github.com/imageworks/OpenColorIO-Configs/zipball/master
http://github.com/imageworks/OpenColorIO-Configs/tarball/master
http://code.google.com/p/opencolorio/downloads/detail?name=ocio-images.1.0v4.tgz
http://github.com/imageworks/OpenColorIO/zipball/v1.0.9
http://github.com/imageworks/OpenColorIO/tarball/v1.0.9
http://github.com/imageworks/OpenColorIO/zipball/master
http://github.com/imageworks/OpenColorIO/tarball/master
http://opensource.imageworks.com/cla/

OpenColorlO Documentation, Release 1.1.1

3.8.2 Deprecated Downloads

» Reference Images v1.0v2 tgz
* Reference Images v1.0vl1 tgz
* Core Library v1.0.8 — .zip .tar.gz
* Core Library v1.0.7 — .zip .tar.gz

* Core Library v1.0.6 — .zip .tar.gz

* Core Library v1.0.5 - .z
* Core Library v1.0.4 — .z

p .tar.gz

—

p .tar.gz
* Core Library v1.0.3 — .zip .tar.gz
¢ Core Library v1.0.2 — .zip .tar.gz

 Core Library v1.0.1 — .zip .tar.gz

* Core Library v1.0.0 — .zip .tar.gz

* Color Config v0.7v4 tgz (OCIO v0.7.6+)
* Core Library v0.8.7 — .zip .tar.gz

 Core Library v0.7.9 — .zip .tar.gz

* Core Library v0.6.1 — .zip .tar.gz

¢ Core Library v0.5.16 — .zip .tar.gz

 Core Library v0.5.8 — .zip .tar.gz

3.9 ChangelLog

Version 1.1.1 (March 25 2019):
* Added optional compatibility for building apps with OpenlmagelO 1.9+
¢ Added USE_SSE checks to fix Linux build failure

» getDisplays() result ordering now matches the active displays config definition or
OCIO_ACTIVE_DISPLAYS env var override.

» Fixed incorrect getDefaultDisplay()/getDefaultView() result when OCIO_ACTIVE_DISPLAYS or
OCIO_ACTIVE_VIEWS env vars are unset.

» Fixed Windows-specific GetEnv() bug
* Fixed Windows and MacOS CI failure cases
» Updated mail list URLs to aswf.io domain
Version 1.1.0 (Jan 5 2018):
¢ libc++ build fixes
¢ Added support for YAML > 5.0.1
YAML and TinyXML patch fixes

* Clang visibility fix
¢ Added write support for Truelight LUTs

3.9. ChangelLog 107


http://code.google.com/p/opencolorio/downloads/detail?name=ocio-images.1.0v2.tgz
http://code.google.com/p/opencolorio/downloads/detail?name=ocio-images.1.0v1.tgz
http://github.com/imageworks/OpenColorIO/zipball/v1.0.8
http://github.com/imageworks/OpenColorIO/tarball/v1.0.8
http://github.com/imageworks/OpenColorIO/zipball/v1.0.7
http://github.com/imageworks/OpenColorIO/tarball/v1.0.7
http://github.com/imageworks/OpenColorIO/zipball/v1.0.6
http://github.com/imageworks/OpenColorIO/tarball/v1.0.6
http://github.com/imageworks/OpenColorIO/zipball/v1.0.5
http://github.com/imageworks/OpenColorIO/tarball/v1.0.5
http://github.com/imageworks/OpenColorIO/zipball/v1.0.4
http://github.com/imageworks/OpenColorIO/tarball/v1.0.4
http://github.com/imageworks/OpenColorIO/zipball/v1.0.3
http://github.com/imageworks/OpenColorIO/tarball/v1.0.3
http://github.com/imageworks/OpenColorIO/zipball/v1.0.2
http://github.com/imageworks/OpenColorIO/tarball/v1.0.2
http://github.com/imageworks/OpenColorIO/zipball/v1.0.1
http://github.com/imageworks/OpenColorIO/tarball/v1.0.1
http://github.com/imageworks/OpenColorIO/zipball/v1.0.0
http://github.com/imageworks/OpenColorIO/tarball/v1.0.0
http://code.google.com/p/opencolorio/downloads/detail?name=ocio-configs.0.7v4.tgz
http://github.com/imageworks/OpenColorIO/zipball/v0.8.7
http://github.com/imageworks/OpenColorIO/tarball/v0.8.7
http://github.com/imageworks/OpenColorIO/zipball/v0.7.9
http://github.com/imageworks/OpenColorIO/tarball/v0.7.9
http://github.com/imageworks/OpenColorIO/zipball/v0.6.1
http://github.com/imageworks/OpenColorIO/tarball/v0.6.1
http://github.com/imageworks/OpenColorIO/zipball/v0.5.16
http://github.com/imageworks/OpenColorIO/tarball/v0.5.16
http://github.com/imageworks/OpenColorIO/zipball/v0.5.8
http://github.com/imageworks/OpenColorIO/tarball/v0.5.8

OpenColorlO Documentation, Release 1.1.1

¢ Improved OCIOYaml

* Python string corruption fix

* Added support for CDL

* Updated documentation

¢ Added args/kwargs support to Python MatrixTransform
* Added description field to Look objects

¢ Improved Python 3 compatibility

» CSP file read fix

¢ Added Linux, MacOS, and Windows continuos integration
* Improved 1D LUT extrapolation

e Improved 1D LUT negative handling

* Improved Windows build system

* Improved cross-platform build system

* Undefined role crash fix

» After Effects plugin updated

* Added reference Photoshop plugin

* Added reference Docker image

Version 1.0.9 (Sep 2 2013):

* CDL cccid supports both named id and index lookups

¢ ociobakelut / ocioconvert updates

* FreeBSD compile dixes

¢ FileTransform disk cache allows concurrent disk lookups
* CSP windows fix

» Python 3 support

* Fix envvar abs/relative path testing

» Can explicitly declare config envvars

* gced4 compile warning fixes

Version 1.0.8 (Dec 11 2012):

» After Effects plugin

* Core increased precision for matrix inversion

¢ Core md5 symbols no longer leaked

¢ CMake compatibility with OIIO 1.0 namespacing
* Cmake option to control python soname

* Nuke register_viewers defaults OCIODisplay to “all”

Nuke ColorLookup <-> spild lut examples

* Windows uses boost shared_ptr by default

108

Chapter 3

. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

* Windows fixed csp writing
* Windows build fixes
 ociobakelut supports looks
Version 1.0.7 (April 17 2012):
e IRIDAS .look support
 ociolutimage utility added (handles image <-> 3dlut)
* CMake build allows optional reliance on system libraries
* CMake layout changes for python and nuke installs
* Bumped internals to yaml 0.3.0, pystring 1.1.2
» Optimized internal handling of Matrix / Exponent Ops
¢ Added INTERP_BEST interpolation option
* Python config.clearLooks() added
* Python docs revamp
* Nuke config-dependent knob values now baked into .nk scripts
* Nuke OCIOLookTransform gets reload button
* Nuke nodes get updated help text
Version 1.0.6 (March 12 2012):
e JNI (Java) updates
* ocioconvert arbitrary attr support
Version 1.0.5 (Feb 22 2012):
* Internal optimization framework added
» SetLoggingLevel(..) bugfix
* Python API Documentation / website updates
» Clang compilation fix
Version 1.0.4 (Jan 25 2012):
* ocio2icc deprecated (functionality merged into ociobakelut)
* rv integration (beta)
* nuke: updated channel handling
* Documentation / website updates
Version 1.0.3 (Dec 21 2011):
¢ Tetrahedral 3dlut interpolation (CPU only)
* ociocheck and Config.sanityCheck() have improved validation
* Mari: updated examples
* Makefile: misc updates to match distro library conventions
Version 1.0.2 (Nov 30 2011):

* 3D lut processing (cpu) is resiliant to nans

3.9. Changelog

109



OpenColorlO Documentation, Release 1.1.1

L]

Nuke OCIOFileTransform gains Reload buttons

Installation on multi-lib *nix systems improved

Installation handling of soversion for C++/python improved

ociobakelut improvements

Initial version of Java bindings (alpha)

Version 1.0.1 (Oct 31 2011):

 Luts with incorrect extension are properly loaded

* ocio2icc / ociobakelut get —lut option (no longer requires ocio config)

¢ DisplayTransform looks do not apply to ‘data’ passes.

Version 1.0.0 (Oct 3 2011):

L]

ABI Lockoff for 1.0 branch

General API Cleanup (removed deprecated / unnecessary functions)

New features can be added, but the ABI will only be extended in a binary compatible manner. Profiles
written from 1.0 will always be readable in future versions.

Fixed Truelight Reading Bug

ocio2icc no longer requires ocio config (can provide raw lut(s)

Version 0.8.7 (Oct 3 2011):

Fixed Truelight Reading Bug

Version 0.8.6 (Sept 7 2011):

» Updated .ocio config reading / writing to be forwards compatibile with 1.0 (Profiles written in 0.8.6+ will
be 1.0 compatible. Compatibility from prior versions is likely, though not guaranteed.)

L]

Better logging

Added ColorSpace.equalitygroup (makes ColorSpace equality explicit)

Substantial Nuke node updates
Added support for Iridas .itx read/write
Windows Build Support

Version 0.8.5 (Aug 2 2011):

Nuke OCIODisplay fixed (bug from 0.8.4)
Updated Houdini HDL Reader / Writer

Version 0.8.4 (July 25 2011):

L]

Native Look Support

Core / Nuke OCIODisplay supports alpha viewing

Added Houdini (.lut) writing
Added Pandora (.mga,.m3d) reading

Additional internal bug fixes

Version 0.8.3 (June 27 2011):

110

Chapter 3

. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

OCIO::Config symlink resolution fixed (bugfix)

Nuke OCIODisplay knobs use string storage (bugfix)
* Makefile cleanup
* Documentation cleanup
Version 0.8.2 (June 7 2011):
* Numerous Windows compatibility fixes
¢ Python binding improvements
* OCIO::Baker / ociobakelut improvements
e Lut1D/3D do not crash on nans (bugfix)
* Nuke UI doesnt crash in known corner case (bugfix)
Version 0.8.1 (May 9 2011):
e New roles: TEXTURE_PAINT + MATTE_PAINT
e Mari API Example (src/mari)
 FileFormat registry updated to allow Windows + Debug support
* boost_ptr build compatibility option
Version 0.8.0 (Apr 19 2011):

* ABI Lockoff for stable 0.8 branch New features can be added, but the ABI will only be extended in a
binary compatible manner

¢ Otherwise identical to 0.7.9

Version 0.7.9 (Apr 18 2011):
* Added support for .vf luts
* Misc. Nuke enhancements
* Adds optional boost ptr support (backwards compatibility)
¢ Makefile enhancements (Nuke / CMAKE_INSTALL_EXEC_PREFIX)
¢ cdlTransform.setXML crash fix
Version 0.7.8 (March 31 2011):
¢ Iridas lut (.cube) bugfix, DOMAIN_MIN / DOMAIN_MAX now obeyed
» Exposed GPU functions in python (needed for Mari)

L]

Nuke OCIODisplay cleanup: Fixed knob names and added envvar support
* ociobaker cleanup
¢ tinyxml ABI visibility cleaned up
* Removed Boost dependency, trl::shared_ptr now used instead
Version 0.7.7 (March 1 2011):
¢ Lut baking API + standalone app

* Truelight runtime support (optional)

3.9. ChangelLog 111



OpenColorlO Documentation, Release 1.1.1

L]

Cinespace (3d) lut writing

CSP prelut support

Boost argparse dependency removed
SanityCheck is more exhaustive

FileTransform supports relative path dirs

Python enhancements (transform kwarg support)
Makefile enhancements (OIIO Path)

Processor API update (code compatible, binary incompatible)

Version 0.7.6 (Feb 1 2011):

L]

Updated Config Display API (.ocio config format updated)
Added ocio2icc app (ICC Profile Generation)

Revamp of ASC CDL, added .cc and .ccc support
Documentation Improvements

Makefile enhancements (Boost_INCLUDE_DIR, etc)

Version 0.7.5 (Jan 13 2011):

L]

ociodisplay enhancements

gpu display bugfix (glsl profile 1.0 only)
Makefile enhancements

Nuke installation cleanup

Doc generation using sphinx (html + pdf)

Version 0.7.4 (Jan 4 2011):

L]

Added ‘Context’, allowing for ‘per-shot” Transforms

Misc API Cleanup: removed old functions + fixed const-ness
Added config.sanityCheck() for validation

Additional Makefile configuration options, SONAME, etc.

Version 0.7.3 (Dec 16 2010):

L]

Added example applications: ociodisplay, ocioconvert
Makefile: Add boost header dependency
Makefile: Nuke plugins are now version specific

Fixed bug in GLSL MatrixOp

Version 0.7.2 (Dec 9 2010):

L]

GPUAllocation refactor (API tweak)
Added AllocationTransform

Added LogTransform

Removed CineonLogToLinTransform

A few bug fixes

112

Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

Version 0.7.1 (Nov 15 2010):
¢ Additional 3d lut formats: Truelight .cub + Iridas .cube
* FileTransform supports envvars and search paths
¢ Added Nuke plugins: LogConvert + FileTransform
¢ Improved OCIO profile formatting
* GCC visibility used (when available) to hide private symbols
* A few bug fixes
Version 0.7.0 (Oct 21 2010):
» Switched file format from XML to Yaml

Version 0.6.1 (Oct 5 2010):
» Exposed ExponentTransform

* Added CineonLogToLinTransform - a simple ‘straight-line’ negative linearization. Not strictly needed
(could be done previously with LUTs) but often convenient to have.

* Added DisplayTransform.displayCC for post display lut CC.
* Many python improvements
* A few bug fixes
* A few Makefile enhancements
Version 0.6.0 (Sept 21 2010):
¢ Start of 0.6, “stable” branch

All 0.6.x builds will be ABI compatible (forward only). New features (even experimental ones) will be
added to the 0.6 branch, as long as binary and source compatibility is maintained. Once this no longer is
possible, a 0.7 “dev” branch will be forked.

* Split public header into 3 parts for improved readability (you still only import <OpenCol-
orlO/OpenColorIO.h> though)

¢ Added MatrixTransform
* Refactored internal unit testing

* Fixed many compile warnings

Version 0.5.16 (Sept 16 2010):
* PyTransforms now use native python class inheritance
* OCIO namespace can now be configured at build time (for distribution in commercial apps)
» Updated make install behavior
* DisplayTransform accepts generic cc operators (instead of CDL only)
* A few bug fixes / compile warning fixes
Version 0.5.15 (Sept 8 2010):

* OCIO is well behaved when $OCIO is unset, allowing un-color-managed use.

3.9. ChangelLog 113



OpenColorlO Documentation, Release 1.1.1

* Color Transforms can be applied in python config->getProcessor
* Simplification of API (getColorSpace allows cs name, role names, and cs objects)
* Makefile enhancements (courtesy Malcolm Humphreys)
* A bunch of bug fixes
Version 0.5.14 (Sept 1 2010):
* Python binding enhancements
» Simplified class implmentations (reduced internal header count)
Version 0.5.13 (Aug 24 2010):
¢ GPU Processing now supports High Dynamic Range color spaces
* Added log processing operator
¢ Numerous bug fixes
* Numerous enhancements to python glue
* Exposed PyOpenColorlO header, for use in apps that require custom python glue
* Matrix op is optimized for diagonal-only subcases
* Numerous changes to Nuke Plugin (now with an addition node, OCIODisplay)
Version 0.5.12 (Aug 18 2010):
* Additional DisplayTransform improvements
* Additional GPU Improvements
* Added op hashing (processor->getGPULut3DCachelD)
Version 0.5.11 (Aug 11 2010):
* Initial DisplayTransform implementation
* ASC CDL Support
¢ Config Luma coefficients
Version 0.5.10 (July 22 2010):
» Updated Nuke Plugin, now works in OSX
* Fixed misc. build warnings.
* Continued GPU progress (still under development)
Version 0.5.9 (June 28 2010):
* Renamed project, classes, namespaces to OpenColorIO (OCIO)
¢ Added single-pixel processor path
* Improved python path makefile detection
* Continued GPU progress (still under development)
Version 0.5.8 (June 22 2010):
e Support for .3dl
 Support for matrix ops

* Code refactor (added Processors) to support gpu/cpu model

114 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

* Much better error checking
¢ Compilation support for python 2.5
» Compilation support for OSX
Version 0.5.7 (June 14 2010):
* Python API is much more fleshed out
¢ Improved public C++ header
Version 0.5.6 (June 8 2010):
* PyConfig stub implementation
* Dropped ImageDesc.init; added PlanarImageDesc / PackedImageDesc
* Dropped trl::shared_ptr; added boost::shared_ptr
Version 0.5.5 (June 4 2010):
* .ocio supports path references
¢ Switch config envvar to $OCIO
¢ Added 3D lut processing ops
Version 0.5.4 (June 1 2010):
¢ Initial Release
* CMake linux support
e XML OCIO format parsing / saving
» Example colorspace configuration with a few ‘trivial’ colorspaces
* Mutable colorspace configuration API
 Support for 1D lut processing
 Support for SPI 1D fileformats.
* Nuke plugin

3.10 License

All code by Sony Pictures Imageworks except:

Pystring http://code.google.com/p/pystring/

TinyXML http://sourceforge.net/projects/tinyxml/

yaml-cpp http://code.google.com/p/yaml-cpp/

PTex (Mutex), courtesy of Brent Burley and Disney http://ptex.us/

Little CMS http://www.littlecms.com/

MDS5, courtesy L. Peter Deutsch, Aladdin Enterprises. http://sourceforge.net/projects/libmd5-rfc/files/

argparse, courtesy OpenlmagelO and Larry Gritz http://openimageio.org

Copyright (c) 2003-2010 Sony Pictures Imageworks Inc., et al. All Rights Reserved.

3.10. License

115


http://code.google.com/p/pystring/
http://sourceforge.net/projects/tinyxml/
http://code.google.com/p/yaml-cpp/
http://ptex.us/
http://www.littlecms.com/
http://sourceforge.net/projects/libmd5-rfc/files/
http://openimageio.org

OpenColorlO Documentation, Release 1.1.1

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Sony Pictures Imageworks nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

Pystring
Copyright (c) 2008-2010, Sony Pictures Imageworks Inc All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following dis-
claimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of
the organization Sony Pictures Imageworks nor the names of its contributors may be used to endorse or promote prod-
ucts derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TinyXML is released under the zlib license:

This software is provided ‘as-is’, without any express or implied warranty. In no event will the authors be held liable
for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter
it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If
you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not
required.

116 Chapter 3. Downloading and Building the Code



OpenColorlO Documentation, Release 1.1.1

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original
software.

3. This notice may not be removed or altered from any source distribution.

yaml-cpp
Copyright (c) 2008 Jesse Beder.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PTEX SOFTWARE Copyright 2009 Disney Enterprises, Inc. All rights reserved

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

99 <6

e The names “Disney”, “Walt Disney Pictures”, “Walt Disney Animation Studios” or the names of its contributors
may NOT be used to endorse or promote products derived from this software without specific prior written
permission from Walt Disney Pictures.

Disclaimer: THIS SOFTWARE IS PROVIDED BY WALT DISNEY PICTURES AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT
AND TITLE ARE DISCLAIMED. IN NO EVENT SHALL WALT DISNEY PICTURES, THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Little CMS Copyright (c) 1998-2010 Marti Maria Saguer

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

3.10. License 117



OpenColorlO Documentation, Release 1.1.1

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

MD5
Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ‘as-is’, without any express or implied warranty. In no event will the authors be held liable
for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter
it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment in the product documentation would be appreciated
but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original
software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch ghost@aladdin.com

argparse

Copyright 2008 Larry Gritz and the other authors and contributors. All Rights Reserved. Based on BSD-licensed
software Copyright 2004 NVIDIA Corp.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of the software’s owners nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PRO-
VIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)

search
genindex

test...123

118 Chapter 3. Downloading and Building the Code


mailto:ghost@aladdin.com

	Mailing Lists
	Quick Start
	Downloading and Building the Code
	Introduction
	Sony Pictures Imageworks Color Pipeline
	Further Information

	Configurations
	Public Configs
	Config Creation

	Installation
	The easy way
	Building from source
	Quick environment configuration
	Nuke Configuration
	Environment variables

	User Guide
	Tool overview
	Baking LUT's
	Contexts
	Looks
	Config syntax

	Developer Guide
	Getting started
	Coding guidelines
	Documentation guidelines
	Submitting Changes
	Issues
	Usage Examples
	C++ API
	C++ Transforms
	C++ Types
	Python API
	Python Transforms
	Python Types
	Internal Architecture Overview

	Compatible Software
	After Effects
	Blender
	Krita
	Silhouette
	Nuke
	Mari
	Katana
	Hiero
	Photoshop
	OpenImageIO
	C++
	Python
	Vegas Pro
	Apps w/icc or luts
	RV
	Java (Beta)
	Gaffer
	Natron
	CryEngine3 (Beta)

	FAQ
	License?
	Terminology
	What LUT Formats are supported?
	Can you query a color space by name (like ``Rec709'') and get back XYZ coordinates of its primaries and whitepoint?
	Can you convert XYZ <-> named color space RGB values?
	What are the differences between Nuke's Vectorfield and OCIOFileTransform?
	What do ColorSpace::setAllocation() and ColorSpace::setAllocationVars() do?

	Downloads
	Contributor License Agreements
	Deprecated Downloads

	ChangeLog
	License


